【題目】如圖,已知在△ABC中,∠ACB=90°,BC=2,AC=4,點(diǎn)D在射線BC上,以點(diǎn)D為圓心,BD為半徑畫弧交邊AB于點(diǎn)E,過點(diǎn)EEFAB交邊AC于點(diǎn)F,射線ED交射線AC于點(diǎn)G

1)求證:△EFG∽△AEG

2)設(shè)FG=x,EFG的面積為y,求y關(guān)于x的函數(shù)解析式并寫出定義域;

3)聯(lián)結(jié)DF,當(dāng)△EFD是等腰三角形時(shí),請直接寫出FG的長度.

【答案】(1)詳見解析;(2)3當(dāng)△EFD為等腰三角形時(shí),FG的長度是:

【解析】試題分析:(1)由等邊對等角得∠B=BED,由同角的余角相等可得∠A=GEF,進(jìn)而由兩角分別相等的兩個(gè)三角形相似,可證EFG∽△AEG;

2EHAF于點(diǎn)H,由tanA=EFG∽△AEG,得AG=4x,AF=3x,EH=

可得y關(guān)于x的解析式;

3EFD是等腰三角形,分三種情況討論:①EF=ED;ED=FDED=EF三種情況討論即可.

試題解析:1 ED=BD,

B=BED

ACB=90°

B+A=90°

EFAB,

BEF=90°

BED+GEF=90°

A=GEF

G是公共角,

EFG∽△AEG

2)作EHAF于點(diǎn)H

RtABC中,∠ACB=90°,BC=2AC=4,

tanA==

RtAEF中,∠AEF=90°tanA==,

EFG∽△AEG,

,

FG=x

EG=2x,AG=4x

AF=3x

EHAF

AHE=EHF=90°

EFA+FEH=90°

AEF=90°,

A+EFA=90°,

A=FEH,

tanA =tanFEH,

RtEHF中,∠EHF=90°,tanFEH==,

EH=2HF,

RtAEH中,∠AHE=90°,tanA==

AH=2EH,

AH=4HF

AF=5HF,

HF=

EH= ,

y=FG·EH==定義域:(0<x≤);

3)當(dāng)EFD為等腰三角形時(shí),

①當(dāng)ED=EF時(shí),則有∠EDF=EFD,

∵∠BED=EFH,

∴∠BEH=AHG

∵∠ACB=AEH=90°,

∴∠CEF=HEF,即EF為∠GEH的平分線,

ED=EF=xDG=8x,

anA=

x=3,即BE=3;

②若FE=FD, 此時(shí)FG的長度是;

③若DE=DF, 此時(shí)FG的長度是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,以AC為邊在△ABC外作正△ACD,連接BD

1以點(diǎn)A為中心,把△ADB順時(shí)針旋轉(zhuǎn)60°,畫出旋轉(zhuǎn)后的圖形(保留作圖痕跡);

2∠ABC30°BC4,BD6,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD是正方形,△ADF旋轉(zhuǎn)一定角度后得到△ABE,如圖所示,如果AF=4,AB=7.

(1)旋轉(zhuǎn)中心是點(diǎn) ,旋轉(zhuǎn)了 度,DE的長度是 ;

(2)BE與DF的關(guān)系如何? 請說明理由.(提示:延長BE交DF于點(diǎn)G)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為測量學(xué)校旗桿AB的高度,小明從旗桿正前方3米處的點(diǎn)C出發(fā),沿坡度為i=1:的斜坡CD前進(jìn)2米到達(dá)點(diǎn)D,在點(diǎn)D處放置測角儀,測得旗桿頂部A的仰角為37°,量得測角儀DE的高為1.5米.A、B、C、D、E在同一平面內(nèi),且旗桿和測角儀都與地面垂直.

(1)求點(diǎn)D的鉛垂高度(結(jié)果保留根號);

(2)求旗桿AB的高度(精確到0.1).

(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司要生產(chǎn)若干件新產(chǎn)品,需要加工后才能投放市場.現(xiàn)有紅星和巨星兩個(gè)工廠都想加工這批產(chǎn)品,已知紅星廠單獨(dú)加工這批產(chǎn)品比巨星廠單獨(dú)加工多用20天,紅星廠每天可以加工16個(gè),巨星廠每天可以加工24個(gè).公司需付紅星廠每天加工費(fèi)80元,巨星廠每天加工費(fèi)120元.

(1)這家公司要生產(chǎn)多少件新產(chǎn)品?

(2)公司制定產(chǎn)品加工方案如下:可由每個(gè)廠家單獨(dú)完成,也可由兩個(gè)廠共同合作完成.在加工過程中,公司需派一名工程師每天到廠家進(jìn)行技術(shù)指導(dǎo),并負(fù)擔(dān)每天的補(bǔ)助費(fèi)5元.請你幫公司選擇一種既省錢又省時(shí)的加工方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)(問題解決)已知點(diǎn)內(nèi),過點(diǎn)分別作關(guān)于的對稱點(diǎn)、.

①如圖1,若,請直接寫出______

②如圖2,連接分別交,若,求的度數(shù);

③在②的條件下,若度(),請直接寫出______度(用含的代數(shù)式表示).

2)(拓展延伸)利用“有一個(gè)角是的等腰三角形是等邊三角形”這個(gè)結(jié)論,解答問題:如圖3,在中,,點(diǎn)內(nèi)部一定點(diǎn),,點(diǎn)、分別在邊、上,請你在圖3中畫出使周長最小的點(diǎn)的位置(不寫畫法),并直接寫出周長的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系O中,正方形A1B1C1O、A2B2C2B1、A3B3C3B2,…, 按圖所示的方式放置.點(diǎn)A1、A2、A3,…和點(diǎn)B1、B2、B3,…分別在直線軸上.已知C1(1,-1),C2, ),則點(diǎn)A3的坐標(biāo)是________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,點(diǎn)A.C分別在x軸、y軸上,CBOAOA=8,若點(diǎn)B的坐標(biāo)為.

(1)直接寫出點(diǎn)A,C的坐標(biāo);

(2)動點(diǎn)P從原點(diǎn)O出發(fā)沿x軸以每秒2個(gè)單位的速度向右運(yùn)動,當(dāng)直線PC把四邊形OABC分成面積相等的兩部分時(shí)停止運(yùn)動,求P點(diǎn)運(yùn)動時(shí)間;

(3)(2)的條件下,點(diǎn)P停止運(yùn)動時(shí),在y軸上是否存在一點(diǎn)Q,連接PQ,使三角形CPQ的面積與四邊形OABC的面積相等?若存在,求點(diǎn)Q的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=6,AD=9AF平分∠BADBC于點(diǎn)E,交DC的延長線于點(diǎn)FBGAF于點(diǎn)G,BG=4EF=AE,則△CEF的周長為__

查看答案和解析>>

同步練習(xí)冊答案