【題目】如圖,在等邊△ABC中,點D為△ABC內的一點,∠ADB=120°,∠ADC=90°,將△ABD繞點A逆時針旋轉60°得△ACE,連接DE.
(1)求證:AD=DE;
(2)求∠DCE的度數(shù);
(3)若BD=1,求AD,CD的長.
【答案】
(1)證明:∵將△ABD繞點A逆時針旋轉60°得△ACE
∴△ABD≌△ACE,∠BAC=∠DAE,
∴AD=AE,BD=CE,∠AEC=∠ADB=120°,
∵△ABC為等邊三角形
∴∠BAC=60°
∴∠DAE=60°
∴△ADE為等邊三角形,
∴AD=DE
(2)∠ADC=90°,∠AEC=120°,∠DAE=60°
∴∠DCE=360°﹣∠ADC﹣∠AEC﹣∠DAE=90°
(3)∵△ADE為等邊三角形
∴∠ADE=60°
∴∠CDE=∠ADC﹣∠ADE=30°
又∵∠DCE=90°
∴DE=2CE=2BD=2,
∴AD=DE=2
在Rt△DCE中,
【解析】(1)利用旋轉的性質和等邊三角形的性質先判斷出△ADE是等邊三角形即可;(2)利用四邊形的內角和即可求出結論;(3)先求出CD,再用勾股定理即可求出結論.
【考點精析】利用等腰三角形的性質和等邊三角形的性質對題目進行判斷即可得到答案,需要熟知等腰三角形的兩個底角相等(簡稱:等邊對等角);等邊三角形的三個角都相等并且每個角都是60°.
科目:初中數(shù)學 來源: 題型:
【題目】下列方程,是一元二次方程的是( )
①3x2+x=20,②2x2﹣3xy+4=0,③x2 =4,④x2=0,⑤x2﹣3x﹣4=0.
A.①②
B.①②④⑤
C.①③④
D.①④⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,利用一面墻(墻的長度不超過45m),用80m長的籬笆圍一個矩形場地.
(1)怎樣圍才能使矩形場地的面積為750m2?
(2)能否使所圍矩形場地的面積為810m2 , 為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點C為⊙O上的一點,點D是 的中點,過D作⊙O的切線交AC于E,DE=3,CE=1.
(1)求證:DE⊥AC;
(2)求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=1,將△ABC繞點C順時針旋轉60°至△A′B′C,點A的對應點A′恰好落在AB上,求BB′的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知矩形ABCD,把△BCD沿BD翻折,得△BDG,BG,AD所在的直線交于點E,過點D作DF∥BE交BC所在直線于點F.
(1)如圖1,AB<AD,
①求證:四邊形BEDF是菱形;
②若AB=4,AD=8,求四邊形BEDF的面積;
(2)如圖2,若AB=8,AD=4,請按要求畫出圖形,并直接寫出四邊形BEDF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們把a、b兩個數(shù)中較小的數(shù)記作min{a,b},直線y=kx﹣k﹣2(k<0)與函數(shù)y=min{x2﹣1、﹣x+1}的圖象有且只有2個交點,則k的取值為
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠CAB交CD于F,CH⊥EF于H,連接DH,求證:
(1)EH=FH;
(2)∠CAB=2∠CDH.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com