【題目】如圖,在Rt△ABC中,∠C=90°,AC=1,BC=,點O為Rt△ABC內(nèi)一點,連接A0、BO、CO,且∠AOC=∠COB=BOA=120°,按下列要求畫圖(保留畫圖痕跡):以點B為旋轉(zhuǎn)中心,將△AOB繞點B順時針方向旋轉(zhuǎn)60°,得到△A′O′B(得到A、O的對應點分別為點A′、O′),則∠A′BC=______,OA+OB+OC=______.
【答案】90° .
【解析】
(1)先根據(jù)三角函數(shù)的定義求出∠ABC的度數(shù),再根據(jù)旋轉(zhuǎn)的性質(zhì)得OA=O′A′,BO=BO′,BA′=BA=2,∠OBO′=∠ABA′=60°,∠BO′A′=∠BOA=120°,則∠CBA′=∠CBA+∠ABA′=90°;
(2)先判斷△BOO′為等邊三角形,所以OO′=BO,∠BOO′=∠BO′O=60°,再證明點C、O、O′、A′共線,從而得到A′C=OC+OB+OA,然后利用勾股定理計算A′C即可.
解:(1)∵∠C=90°,AC=1,BC=,
∴tan∠ABC==,AB=2,
∴∠ABC=30°,
∵將△AOB繞點B順時針方向旋轉(zhuǎn)60°,得到△A′O′B(得到A、O的對應點分別為點A′、O′),
∴OA=O′A′,BO=BO′,BA′=BA=2,∠OBO′=∠ABA′=60°,∠BO′A′=∠BOA=120°,
∴∠A′BC=∠CBA+∠ABA′=30°+60°=90°;
(2)∵BO=BO′,∠OBO′=∠ABA′=60°
∴△BOO′為等邊三角形,
∴OO′=BO,∠BOO′=∠BO′O=60°,
而∠BOC=120°,
∴∠COO′=∠BOC+∠BOO′=60°+120°=180°,
∴點O′在直線CO上,
同理可得點O、O′、A′共線,
∴A′C=OC+OO′+O′A′=OC+OB+OA,
∵∠CBA′=∠CBA+∠ABA′=30°+60°=90°,
∴A′C==,
即OA+OB+OC=.
故答案為90°,.
科目:初中數(shù)學 來源: 題型:
【題目】我國古代數(shù)學著作《九章算術》中有這樣一個問題:今有池方一丈,葭生其中央,出水一尺.引葭赴岸,適于岸齊,問水深、葭長各幾何?”這道題的意思是說:“有一個邊長為10尺的正方形水池,在水池的正中央長著一根蘆葦,蘆葦露出水面1尺,若將蘆葦拉到水池一邊的中點處,蘆葦?shù)捻敹饲『玫竭_池邊的水面,問水的深度與這根蘆葦?shù)拈L度分別是多少?若設水的深度為x尺,則可以得到方程_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,AB=8cm,對角線AC、BD相交于點O,點E、F分別從B、C兩點同時出發(fā),以1cm/s的速度沿BC、CD運動,到點C、D時停止運動,設運動時間為t(s),△OEF的面積為S(cm2),則S(cm2)與t(s)的函數(shù)關系可用圖象表示為( )
A. A B. B C. C D. D
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在我國古代數(shù)學著作《九章算術》中記載了這樣一個問題:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”用現(xiàn)代語言表述為:如圖,AB為⊙O的直徑,弦CD⊥AB于點E,AE = 1寸,CD = 10寸,求直徑AB的長.請你解答這個問題.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AD既是△ABC的中線,又是角平分線,請判斷:
(1)△ABC的形狀;
(2)AD是否過△ABC外接圓的圓心O,⊙O是否是△ABC的外接圓,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正方形、、…按如圖放置,其中點、、…在軸正半軸上,點、、…在直線上,依此類推…,則點的坐標是________;點的坐標是_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】任意兩點關于它們所連線段的中點成中心對稱,在平面直角坐標系中,任意兩點P(x1,y1),Q (x2,y2)的對稱中心的坐標為,如圖.
(1)在平面直角坐標系中,若點P1(0,-1),P2(2,3)的對稱中心是點A,則點A的坐標為________;
(2)另取兩點,.有一電子青蛙從點P1處開始依次作關于點A,B,C的循環(huán)對稱跳動,即第一次跳到點P1關于點A的對稱點P2處,接著跳到點P2關于點B的對稱點P3處,第三次再跳到點P3關于點C的對稱點P4處,第四次再跳到點P4關于點A的對稱點P5處,…,則點的坐標為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=45°,△AEF是由△ABC繞點A按順時針方向旋轉(zhuǎn)得到的,連接BE、CF相交于點D
(1)求證:BE=CF;
(2)當四邊形ACDE為平行四邊形時,求證:△ABE為等腰直角三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com