【題目】如圖,∠MON=20°,A、B分別為射線OM、ON上兩定點(diǎn),且OA=2OB=4,點(diǎn)P、Q分別為射線OMON兩動點(diǎn),當(dāng)P、Q運(yùn)動時,線段AQ+PQ+PB的最小值是( 。

A.3B.C.2D.

【答案】D

【解析】

首先作A關(guān)于ON的對稱點(diǎn)A′,點(diǎn)B關(guān)于OM的對稱點(diǎn)B′,連接A′B′,交于OM,ON分別為PQ,連接OA′,OB′,可求得AQ+PQ+PB=A′Q+PQ+PB′=A′B′,∠A′OB′=60°,然后由特殊角的三角函數(shù)值,判定∠OA′B′=90°,再利用勾股定理求得答案.

A關(guān)于ON的對稱點(diǎn)A′,點(diǎn)B關(guān)于OM的對稱點(diǎn)B′,連接A′B′,交于OM,ON分別為P,Q,連接OA′,OB′

PB′=PB,AQ=A′Q,OA′=OA=2OB′=OB=4,∠MOB′=NOA′=MON=20°,

AQ+PQ+PB=A′Q+PQ+PB′=A′B′,∠A′OB′=60°,

,

∴∠OA′B′=90°,

A′B′=,

∴線段AQ+PQ+PB的最小值是:

故答案為D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正五邊形ABCDE中每個內(nèi)角是108°,請使用無刻度的直尺畫出一個以B,CD,P為頂點(diǎn)的菱形并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某賓館擁有客房100間,經(jīng)營中發(fā)現(xiàn):每天入住的客房數(shù)y()與房價x()(180≤x≤300)滿足一次函數(shù)關(guān)系,部分對應(yīng)值如下表:

x()

180

260

280

300

y()

100

60

50

40

(1)yx之間的函數(shù)表達(dá)式;

(2)已知每間入住的客房,賓館每日需支出各種費(fèi)用100元;每間空置的客房,賓館每日需支出各種費(fèi)用60元.當(dāng)房價為多少元時,賓館當(dāng)日利潤最大?求出最大利潤.(賓館當(dāng)日利潤=當(dāng)日房費(fèi)收入-當(dāng)日支出)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC的頂點(diǎn)坐標(biāo)分別為A(0,1)、B(3,3)、C(1,3).

(1) 畫出ABC關(guān)于點(diǎn)O的中心對稱圖形A1B1C1

(2) 畫出ABC繞原點(diǎn)O逆時針旋轉(zhuǎn)90°A2B2C2,直接寫出點(diǎn)C2的坐標(biāo)為______.

(3) ABC內(nèi)一點(diǎn)P(mn)繞原點(diǎn)O逆時針旋轉(zhuǎn)90°的對應(yīng)點(diǎn)為Q,則Q的坐標(biāo)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程 x2﹣(2k+1x+4k)=0.若等腰三角形ABC的一邊長a4,另兩邊邊長b、c恰好是這個方程的兩個實(shí)數(shù)根,則ABC的周長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yax2bxc開口向上,與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C

(1) 如圖1,若A (1,0)、C (0,3)且對稱軸為直線x2,求拋物線的解析式

(2) 在(1)的條件下,如圖2,作點(diǎn)C關(guān)于拋物線對稱軸的對稱點(diǎn)D,連接AD、BD,在拋物線上是否存在點(diǎn)P,使∠PAD=∠ADB,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請說明理由

(3) 若直線lymxn與拋物線有兩個交點(diǎn)M、NMN的左邊),Q為拋物線上一點(diǎn)(不與M、N重合),過點(diǎn)QQH平行于y軸交直線l于點(diǎn)H,求的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A4,0),B3,3),以OA、AB為邊作OABC,則若一個反比例函數(shù)的圖象經(jīng)過C點(diǎn),則這個反比例函數(shù)的表達(dá)式為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABC繞著點(diǎn)C順時針旋轉(zhuǎn)50°后得到ABC.若∠A40°,∠B110°,則∠BCA的度數(shù)是( 。

A.90°B.80°C.50°D.30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)與一次函數(shù),令W=.

(1)若、的函數(shù)圖像交于x軸上的同一點(diǎn).

①求的值;

②當(dāng)為何值時,W的值最小,試求出該最小值;

(2)當(dāng)時,W隨x的增大而減小.

①求的取值范圍;

②求證: .

查看答案和解析>>

同步練習(xí)冊答案