【題目】為了了解某中學學生的身高情況,隨機對該校男、女生的身高進行抽樣調(diào)查.抽取的樣本中,男、女生的人數(shù)相同,根據(jù)所得數(shù)據(jù)繪制成如圖所示的統(tǒng)計圖表.
組別 | 男女生身高(cm) |
A | 150≤x<155 |
B | 155≤x<160 |
C | 160≤x<165 |
D | 165≤x<170 |
E | 170≤x<175 |
根據(jù)圖表中提供的信息,回答下列問題:
(1)在樣本中,男生身高的中位數(shù)落在__________組(填組別序號),女生身高在B組的有__________人;
(2)在樣本中,身高在170≤x<175之間的共有__________人,人數(shù)最多的是__________組(填組別序號);
(3)已知該校共有男生500人,女生480人,請估計身高在160≤x<170之間的學生有多少人?
【答案】(1)D;12;(2)10;C;(3)估計身高在160≤x<170之間的學生約有541人.
【解析】
(1)根據(jù)中位數(shù)的定義進行求解可得男生身高的中位數(shù),由于抽取的男、女生人數(shù)相同,因此用40×(1–20%–35%–10%–5%)即可求得女生身高在B組的人數(shù);
(2)將身高在170≤x<175之間的男、女生人數(shù)相加即可,分別求出A、B、C、D、E組的男、女生人數(shù)之和,比較即可確定;
(3)分別用男、女生人數(shù)乘以身高在160≤x<170之間的學生所占比例,然后相加即可得.
(1)∵在樣本中,男生共有2+4+8+12+14=40(人),
∴中位數(shù)是第20和第21人的平均數(shù),
∴男生身高的中位數(shù)落在D組,
女生身高在B組的人數(shù)有40×(1–20%–35%–10%–5%)=12(人),
故答案為:D;12;
(2)在樣本中,身高在170≤x<175之間的人數(shù)共有8+40×5%=10(人),
∵A組人數(shù)為2+40×20%=10(人),
B組人數(shù)為4+12=32(人),
C組人數(shù)為12+40×35%=26人,
D組人數(shù)為14+40×10%=18(人),
E組人數(shù)為8+40×5%=10(人),
∴C組人數(shù)最多,
故答案為:10;C;
(3)500×+480×(35%+10%)=541(人),
故估計身高在160≤x<170之間的學生約有541人.
科目:初中數(shù)學 來源: 題型:
【題目】某商家在購進一款產(chǎn)品時,由于運輸成本及產(chǎn)品成本的提高,該產(chǎn)品第 x 天的成本 y(元/件)與 x(天)之間的關(guān)系如圖所示,并連續(xù) 60 天均以 80 元/件的價格出售, 第 x 天該產(chǎn)品的銷售量 z(件)與 x(天)滿足關(guān)系式 z=x+15.
(1)第 25 天,該商家的成本是 元,獲得的利潤是 元;
(2)設(shè)第 x 天該商家出售該產(chǎn)品的利潤為 w 元.
①求 w 與 x 之間的函數(shù)關(guān)系式;
②求出第幾天的利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩地相距300千米,一輛貨車和一輛轎車先后從甲地出發(fā)駛向乙地如圖,如圖,線段OA表示貨車離甲地距離y(千米)與時間x(小時)之間的函數(shù)圖象;折線BCD表示轎車離甲地距離y(千米)與時間x(小時)之間的函數(shù)圖象;請根據(jù)圖象解答下到問題:
(1)貨車離甲地距離y(干米)與時間x(小時)之間的函數(shù)式為 ;
(2)當轎車與貨車相遇時,求此時x的值;
(3)在兩車行駛過程中,當轎車與貨車相距20千米時,求x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一個兩位數(shù),用表示十位上的數(shù),用表示個位上的數(shù).
(1)用含,的式子表示這個兩位數(shù);
(2)把這個兩位數(shù)個位上的數(shù)字與十位上的數(shù)字交換位置,得到一個新的兩位數(shù).
①若原數(shù)個位上的數(shù)是十位上的數(shù)的3倍,且新數(shù)與原數(shù)的差是36,求原來的兩位數(shù)是多少?
②列式表示所得新數(shù)的平方與原數(shù)的平方的差(結(jié)果要化簡),并判斷其是11的倍數(shù)嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲騎電動車、乙騎摩托車都從M地出發(fā),沿一條筆直的公路勻速前往N地,甲先出發(fā)一段時間后乙再出發(fā).甲,乙兩人到達N地后均停止騎行,已知M,N兩地相距km,設(shè)甲行駛的時間為x(h),甲、乙兩人之同的距離為y(km),表示y與x函數(shù)關(guān)系的圖象如圖所示.請你解決以下問題:
(1)求線段BC所在直線的函數(shù)表達式;
(2)分別求甲,乙的速度;
(3)填空:點A的坐標是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0)和點B(3,0),與y軸交于點C,連接BC交拋物線的對稱軸于點E,D是拋物線的頂點.
(1)求此拋物線的解析式;
(2)求點C和點D的坐標;
(3)若點P在第一象限內(nèi)的拋物線上,且S△ABP=4S△COE,求P點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線經(jīng)過三點,已知
求此拋物線的關(guān)系式;
設(shè)點是線段上方的拋物線上一動點,過點作軸的平行線,交線段于點當的面積最大時,求點的坐標;
點是拋物線上的一動點,當中的面積最大時,請直接寫出使的點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】電器專營店的經(jīng)營利潤受地理位置、顧客消費能力等因素的影響,某品牌電腦專營店設(shè)有甲、乙兩家分店,均銷售A、B、C、D四種款式的電腦,每種款式電腦的利潤如表1所示.現(xiàn)從甲、乙兩店每月售出的電腦中各隨機抽取所記錄的50臺電腦的款式,統(tǒng)計各種款式電腦的銷售數(shù)量,如表2所示.
表1:四種款式電腦的利潤
電腦款式 | A | B | C | D |
利潤(元/臺) | 160 | 200 | 240 | 320 |
表2:甲、乙兩店電腦銷售情況
電腦款式 | A | B | C | D |
甲店銷售數(shù)量(臺) | 20 | 15 | 10 | 5 |
乙店銷售數(shù)量(臺)8 | 8 | 10 | 14 | 18 |
試運用統(tǒng)計與概率知識,解決下列問題:
(1)從甲店每月售出的電腦中隨機抽取一臺,其利潤不少于240元的概率為 ;
(2)經(jīng)市場調(diào)查發(fā)現(xiàn),甲、乙兩店每月電腦的總銷量相當.現(xiàn)由于資金限制,需對其中一家分店作出暫停營業(yè)的決定,若從每臺電腦的平均利潤的角度考慮,你認為應(yīng)對哪家分店作出暫停營業(yè)的決定?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解學生的課外閱讀情況,七(1)班針對“你最喜愛的課外閱讀書目”進行調(diào)查(每名學生必須選一類且只能選一類閱讀書目),并根據(jù)調(diào)查結(jié)果列出統(tǒng)計表,繪制成扇形統(tǒng)計圖.
男、女生所選類別人數(shù)統(tǒng)計表
類別 | 男生(人) | 女生(人) |
文學類 | 12 | 8 |
史學類 | 5 | |
科學類 | 6 | 5 |
哲學類 | 2 |
根據(jù)以上信息解決下列問題
(1) , ;
(2)扇形統(tǒng)計圖中“科學類”所對應(yīng)扇形圓心角度數(shù)為 ;
(3)從選哲學類的學生中,隨機選取兩名學生參加學校團委組織的辯論賽,請用樹狀圖或列表法求出所選取的兩名學生都是男生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com