【題目】如圖,點D是Rt△ABC斜邊AB的中點,過點B、C分別作BE∥CD,CE∥BD.
(1)若∠A=60°,AC=,求CD的長;
(2)求證:BC⊥DE.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
(1)根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求出AB,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得CD=AB;
(2)求出四邊形BECD是菱形,然后根據(jù)菱形的對角線互相垂直證明即可.
(1)解:∵△ABC是直角三角形,∠A=60°,AC=,
∴∠ABC=90°﹣60°=30°,
∴AB=2AC=2,
∵點D是Rt△ABC斜邊AB的中點,
∴CD=AB=×2=;
(2)證明:∵BE∥CD,CE∥BD,
∴四邊形BECD是平行四邊形,
∵點D是Rt△ABC斜邊AB的中點,
∴CD=BD=AB,
∴四邊形BECD是菱形,
∴BC⊥DE.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AM∥BN,∠A=52°,點P是射線AM上的動點(與點A不重合),BC、BD分別平分∠ABP和∠PBN,分別交射線AM于點C,D.
(1)求∠CBD的度數(shù);
(2)當點P運動時,∠APB與∠ADB之間的數(shù)量關(guān)系是否隨之發(fā)生變化?若不變化,請寫出它們之間的關(guān)系,并說明理由,若變化,請寫出變化規(guī)律;
(3)當點P運動到使∠ACB=∠ABD時,求∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C,D,E三點在同一條直線上,連接BD.圖中的CE、BD有怎樣的大小和位置關(guān)系?試證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D、E、F分別在BC、AB、AC邊上,且BE=CF, BD=CE.
(1)求證:△DEF是等腰三角形;
(2)當∠A=40°時,求∠DEF的度數(shù);
(3)△DEF可能是等腰直角三角形嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)在圖中的點上標出相應(yīng)字母A、B、C,并求出△ABC的面積;
(2)在圖中作出△ABC關(guān)于y軸的對稱圖形△A1B1C1;
(3)寫出點A1,B1,C1的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=100°,點D在BC邊上,△ABD和△AFD關(guān)于直線AD對稱,∠FAC的平分線交BC于點G,連接FG.
(1)求∠DFG的度數(shù);
(2)設(shè)∠BAD=θ,
①當θ為何值時,△DFG為等腰三角形;
②△DFG有可能是直角三角形嗎?若有,請求出相應(yīng)的θ值;若沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB⊥BC,DC⊥BC,E是BC上一點,使得AE⊥DE;
(1)求證:△ABE∽△ECD;
(2)若AB=4,AE=BC=5,求CD的長;
(3)當△AED∽△ECD時,請寫出線段AD、AB、CD之間數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+2x+m.
(1)如果二次函數(shù)的圖象與x軸有兩個交點,求m的取值范圍;
(2)如圖,二次函數(shù)的圖象過點A(3,0),與y軸交于點B,直線AB與這個二次函數(shù)圖象的對稱軸交于點P,求點P的坐標.
(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標為(1,n),拋物線與x軸的一個交點在點(3,0)和(4,0)之間.則下列結(jié)論
①a-b+c>0;②3a+b=0;
③b2=4a(c-n);
④一元二次方程ax2+bx+c=n-1有兩個不相等的實數(shù)根.
其中正確結(jié)論的個數(shù)是( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com