【題目】小張騎自行車勻速從甲地到乙地,在途中因故停留了一段時間后,仍按原速騎行,小李騎摩托車比小張晚出發(fā)一段時間,以800米/分的速度勻速從乙地到甲地,兩人距離乙地的路程y(米)與小張出發(fā)后的時間x(分)之間的函數(shù)圖象如圖所示.
(1)求小張騎自行車的速度;
(2)求小張停留后再出發(fā)時y與x之間的函數(shù)表達式;
(3)求小張與小李相遇時x的值.
【答案】(1)300米/分;(2)y=﹣300x+3000;(3)分.
【解析】
(1)由圖象看出所需時間.再根據(jù)路程÷時間=速度算出小張騎自行車的速度.
(2)根據(jù)由小張的速度可知:B(10,0),設出一次函數(shù)解析式,用待定系數(shù)法求解即可.
(3)求出CD的解析式,列出方程,求解即可.
解:(1)由題意得:(米/分),
答:小張騎自行車的速度是300米/分;
(2)由小張的速度可知:B(10,0),
設直線AB的解析式為:y=kx+b,
把A(6,1200)和B(10,0)代入得:
解得:
∴小張停留后再出發(fā)時y與x之間的函數(shù)表達式;
(3)小李騎摩托車所用的時間:
∵C(6,0),D(9,2400),
同理得:CD的解析式為:y=800x﹣4800,
則
答:小張與小李相遇時x的值是分.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線EF,CD相交于點0,OA⊥OB,且OC平分∠AOF,
(1)若∠AOE=40°,求∠BOD的度數(shù);
(2)若∠AOE=α,求∠BOD的度數(shù);(用含α的代數(shù)式表示)
(3)從(1)(2)的結果中能看出∠AOE和∠BOD有何關系?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,反比例函數(shù)y= (x>0)的圖象和矩形ABCD在第一象限,AD平行于x軸,且AB=2,AD=4,點A的坐標為(2,6).
(1)直接寫出B、C、D三點的坐標;
(2)若將矩形向下平移,矩形的兩個頂點恰好同時落在反比例函數(shù)的圖象上,猜想這是哪兩個點,并求矩形的平移距離和反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,△ABC與△DEC關于點C成中心對稱,連接AE、BD.
(1)線段AE、BD具有怎樣的位置關系和大小關系?說明你的理由.
(2)如果△ABC的面積為5cm2 , 求四邊形ABDE的面積.
(3)當∠ACB為多少度時,四邊形ABDE為矩形?說明你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校學生會為了解本校初中學生每天做作業(yè)所用時間情況,采用問卷的方式對一部分學生進行調查.在確定調查對象時,大家提出以下幾種方案:A.對各班班長進行調查;B.對某班的全體學生進行調查;C.從全校每班隨機抽取5名學生進行調查.在問卷調查時,每位被調查的學生都選擇了問卷中適合自己的一個時間,學生會將收集到的數(shù)據(jù)整理后繪制成如圖所示的條形統(tǒng)計圖.
(1)為了使收集到的數(shù)據(jù)具有代表性.學生會在確定調查對象時應選擇方案________ (填A,B或C);
(2)被調查的學生每天做作業(yè)所用時間的眾數(shù)為________h;
(3)根據(jù)以上統(tǒng)計結果,估計該校900名初中學生中每天做作業(yè)用1.5 h的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】壽縣教育部門計劃在3月12日植樹節(jié)當天安排,兩校部分學生到森林公園參加植樹活動.已知校區(qū)的每位學生往返車費是6元,校每位學生的往返車費是10元,要求兩所學校均要有學生參加,且校參加活動的學生比校參加活動的學生少4人,本次活動的往返車費總和不超過210元.求,兩校最多各有多少學生參加?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】杭州地鐵5號線全長48.18公里,投資315.9億元,規(guī)劃建設預期2014-2019年,杭州工程地鐵隊負責建設,分兩個班組分別從杭州南站外香樟路站和余杭科技島站同時開工掘進.已知甲組比乙組平均每天多掘進2.4米,經過5天施工,兩組共掘進了110米.
(1)求甲、乙兩個班組平均每天各掘進多少米?
(2)為加快工程進度,通過改進施工技術,在剩余的工程中,甲組平均每天能比原來多掘進1.7米,乙組平均每天能比原來多掘進1.3米.按此施工進度,能夠比原來少用多少天完成任務?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題:如圖(1),點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關系.
【發(fā)現(xiàn)證明】小聰把△ABE繞點A逆時針旋轉90°至△ADG,從而發(fā)現(xiàn)EF=BE+FD,請你利用圖(1)證明上述結論.
【類比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,點E、F分別在邊BC、CD上,則當∠EAF與∠BAD滿足 關系時,仍有EF=BE+FD;請證明你的結論.
【探究應用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點E、F,且AE⊥AD,DF=40(﹣1)米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長.(結果取整數(shù),參考數(shù)據(jù): =1.41, =1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,若把邊長為1的正方形ABCD的四個角(陰影部分)剪掉,得一四邊形A1B1C1D1 . 試問怎樣剪,才能使剩下的圖形仍為正方形,且剩下圖形的面積為原來正方形面積的 ,請說明理由.(寫出證明及計算過程)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com