【題目】問題:如圖(1),點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關(guān)系.
【發(fā)現(xiàn)證明】小聰把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,從而發(fā)現(xiàn)EF=BE+FD,請你利用圖(1)證明上述結(jié)論.
【類比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,點(diǎn)E、F分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿足 關(guān)系時(shí),仍有EF=BE+FD;請證明你的結(jié)論.
【探究應(yīng)用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點(diǎn)E、F,且AE⊥AD,DF=40(﹣1)米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長.(結(jié)果取整數(shù),參考數(shù)據(jù): =1.41, =1.73)
【答案】【發(fā)現(xiàn)證明】證明見解析;【類比引申】∠BAD=2∠EAF;【探究應(yīng)用】109.2米.
【解析】【發(fā)現(xiàn)證明】根據(jù)旋轉(zhuǎn)的性質(zhì)可以得到△ADG≌△ABE,則GF=BE+DF,只要再證明△AFG≌△AFE即可.
【類比引申】延長CB至M,使BM=DF,連接AM,證△ADF≌△ABM,證△FAE≌△MAE,即可得出答案;
【探究應(yīng)用】利用等邊三角形的判定與性質(zhì)得到△ABE是等邊三角形,則BE=AB=80米.把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)150°至△ADG,根據(jù)旋轉(zhuǎn)的性質(zhì)可以得到△ADG≌△ABE,則GF=BE+DF,只要再證明△AFG≌△AFE即可得出EF=BE+FD.
解:如圖(1),
∵△ADG≌△ABE,
∴AG=AE,∠DAG=∠BAE,DG=BE,
又∵∠EAF=45°,即∠DAF+∠BEA=∠EAF=45°,
∴∠GAF=∠FAE,
在△GAF和△FAE中,
AG=AE,∠GAF=∠FAE,AF=AF,
∴△AFG≌△AFE(SAS).
∴GF=EF.
又∵DG=BE,
∴GF=BE+DF,
∴BE+DF=EF.
【類比引申】∠BAD=2∠EAF.
理由如下:如圖(2),延長CB至M,使BM=DF,連接AM,
∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,
∴∠D=∠ABM,
在△ABM和△ADF中,
AB=AD,∠ABM=∠D,BM=DF,
∴△ABM≌△ADF(SAS),
∴AF=AM,∠DAF=∠BAM,
∵∠BAD=2∠EAF,
∴∠DAF+∠BAE=∠EAF,
∴∠EAB+∠BAM=∠EAM=∠EAF,
在△FAE和△MAE中,
AE=AE,∠FAE=∠MAE,AF=AM,
∴△FAE≌△MAE(SAS),
∴EF=EM=BE+BM=BE+DF,
即EF=BE+DF.
故答案是:∠BAD=2∠EAF.
【探究應(yīng)用】如圖3,把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)150°至△ADG,連接AF.
∵∠BAD=150°,∠DAE=90°,
∴∠BAE=60°.
又∵∠B=60°,
∴△ABE是等邊三角形,
∴BE=AB=80米.
根據(jù)旋轉(zhuǎn)的性質(zhì)得到:∠ADG=∠B=60°,
又∵∠ADF=120°,
∴∠GDF=180°,即點(diǎn)G在CD的延長線上.
易得,△ADG≌△ABE,
∴AG=AE,∠DAG=∠BAE,DG=BE,
又∵∠EAG=∠BAD=150°,
∴∠GAF=∠FAE,
在△GAF和△FAE中,
AG=AE,∠GAF=∠FAE,AF=AF,
∴△AFG≌△AFE(SAS).
∴GF=EF.
又∵DG=BE,
∴GF=BE+DF,
∴EF=BE+DF=80+40(﹣1)≈109.2(米),即這條道路EF的長約為109.2米.
“點(diǎn)睛”此題主要考查了四邊形綜合題,關(guān)鍵是正確畫出圖形,證明△AFG≌△AEF.此題是一道綜合題,難度較大,題目所給例題的思路,為解決此題做了較好的鋪墊.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把下列各數(shù)分別填入相應(yīng)的集合中:-(-230),,0,-0.99,1.31,5,,3.14246792…,-.
(1)整數(shù)集合:{ …}
(2)非正數(shù)集合:{ …}
(3)正有理數(shù)集合:{ …}
(4)無理數(shù)集合:{ …}
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小張騎自行車勻速從甲地到乙地,在途中因故停留了一段時(shí)間后,仍按原速騎行,小李騎摩托車比小張晚出發(fā)一段時(shí)間,以800米/分的速度勻速從乙地到甲地,兩人距離乙地的路程y(米)與小張出發(fā)后的時(shí)間x(分)之間的函數(shù)圖象如圖所示.
(1)求小張騎自行車的速度;
(2)求小張停留后再出發(fā)時(shí)y與x之間的函數(shù)表達(dá)式;
(3)求小張與小李相遇時(shí)x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知DE∥BC,∠ABC=100°,點(diǎn)F在射線BA上,且∠EDF=120°,則∠DFB的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠BAC=60°,AB=2.Rt△AB′C′可以看作是由Rt△ABC繞A點(diǎn)逆時(shí)針方向旋轉(zhuǎn)60°得到的,求線段 B′C的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市預(yù)測某飲料有發(fā)展前途,用1600元購進(jìn)一批飲料,面市后果然供不應(yīng)求,又用6000元購進(jìn)這批飲料,第二批飲料的數(shù)量是第一批的3倍,但單價(jià)比第一批貴2元.
(1)第一批飲料進(jìn)貨單價(jià)多少元?
(2)若二次購進(jìn)飲料按同一價(jià)格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價(jià)至少為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△AB C中,AB=AC,BD和CD分別是∠ABC和∠ACB的平分線,EF過D點(diǎn),且EF∥BC,圖中等腰三角形共有( 。
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,∠ADC=120°,P為直線CD上一動點(diǎn),點(diǎn)M在線段BC上,連MP,設(shè)∠MPD=α.
(1)如圖1,若MP⊥CD,則∠BMP=___度;
(2)如圖2,當(dāng)P點(diǎn)在CD延長線上時(shí),∠BMP=___(用α表示);
(3)如圖3,當(dāng)P點(diǎn)在DC延長線上時(shí),(2)中結(jié)論是否仍成立?請畫出圖形并證明你的判斷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】大石橋市政府為了落實(shí)“暖冬惠民工程”,計(jì)劃對城區(qū)內(nèi)某小區(qū)的部分老舊房屋及供暖管道和部分路段的人行地磚、綠化帶等公共設(shè)施進(jìn)行全面更新改造。該工程乙隊(duì)單獨(dú)完成所需天數(shù)是甲隊(duì)單獨(dú)完成所需天數(shù)的1.5倍 , 若甲隊(duì)先做10天,剩下兩隊(duì)合作30天完成。
(1)甲乙兩個(gè)隊(duì)單獨(dú)完成此項(xiàng)工程各需多少天?
(2)已知甲隊(duì)每天的施工費(fèi)用為8.4萬元,乙對每天的施工費(fèi)用為5.6萬元,工程施工的預(yù)算費(fèi)用為500萬元,為了縮短工期并高效完成工程,擬預(yù)算的費(fèi)用是否夠用?若不夠用,需追加預(yù)算多少萬元?請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com