【題目】(1)如圖(1),在ABC,AB=AC,O為ABC內(nèi)一點,且OB=OC,求證:直線AO垂直平分BC.以下是小明的證題思路,請補全框圖中的分析過程.

(2)如圖(2),在ABC中,AB=AC,點D、E分別在AB、AC上,且BD=CE.請你只用無刻度的直尺畫出BC邊的垂直平分線(不寫畫法,保留畫圖痕跡).

(3)如圖(3),在五邊形ABCDE中,AB=AE,BC=DE,B=E,請你只用無刻度的直尺畫出CD邊的垂直平分線,并說明理由.

【答案】(1)見解析;(2)見解析;(3)見解析

【解析】

試題分析:(1)根據(jù)線段垂直平分線的性質(zhì)定理的逆定理,只要AB=AC,OB=OC即可說明直線AO垂直平分BC;

(2)連結(jié)BE、CD相交于點O,則直線AO為BC邊的垂直平分線;

(3)連結(jié)BD、CE相交于點O,則直線AO為CD邊的垂直平分線.先證明ABC≌△AED得到AC=AD,ACB=ADE,根據(jù)等腰三角形的性質(zhì)得ACD=ADC,所以BCD=EDC,再證明BCD≌△ECD,則BDC=ECD,所以OD=OC,于是根據(jù)線段垂直平分線定理的逆定理即可判斷直線AO為CD邊的垂直平分線.

解:(1)

(2)如圖(2),AO為所作;

(3)如圖(3),AO為所作.

ABCAED

,

∴△ABC≌△AED,

AC=ADACB=ADE,

∴∠ACD=ADC,

∴∠BCD=EDC,

BCDEDC中,

∴△BCD≌△ECD,

∴∠BDC=ECD

OD=OC,

AO垂直平分CD.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,CAB=30°,AB=10,點D在線段AB上,AD=2.點P,Q以相同的速度從D點同時出發(fā),點P沿DB方向運動,點Q沿DA方向到點A后立刻以原速返回向點B運動.以PQ為直徑構造⊙O,過點P作⊙O的切線交折線AC﹣CB于點E,將線段EP繞點E順時針旋轉(zhuǎn)60°得到EF,過FFGEPG,當P運動到點B時,Q也停止運動,設DP=m.

(1)當2<m≤8時,AP=,AQ=.(用m的代數(shù)式表示)

(2)當線段FG長度達到最大時,求m的值;

(3)在點P,Q整個運動過程中,

①當m為何值時,⊙O與△ABC的一邊相切?

②直接寫出點F所經(jīng)過的路徑長是.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】家用電滅蚊器的發(fā)熱部分使用了PTC發(fā)熱材料,它的電阻R)隨溫度t)(在一定范圍內(nèi))變化的大致圖象如圖所示.通電后,發(fā)熱材料的溫度在由室溫10上升到30的過程中,電阻與溫度成反比例關系,且在溫度達到30時,電阻下降到最小值;隨后電阻隨溫度升高而增加,溫度每上升1,電阻增加

(1)求當10≤t≤30時,Rt之間的關系式;

(2)求溫度在30℃時電阻R的值;并求出t≥30時,Rt之間的關系式;

(3)家用電滅蚊器在使用過程中,溫度在什么范圍內(nèi)時,發(fā)熱材料的電阻不超過6 kΩ?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某水平地面上建筑物的高度為AB,在點D和點F處分別豎立高是2米的標桿CDEF,兩標桿相隔52,并且建筑物AB,標桿CDEF在同一豎直平面內(nèi),從標桿CD后退2米到點G,G處測得建筑物頂端A和標桿頂端C在同一條直線上;從標桿FE后退4米到點H,H處測得建筑物頂端A和標桿頂端E在同一條直線上求建筑物的高

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的網(wǎng)格中有四條線段AB、CDEF、GH(線段端點在格點上),

選取其中三條線段,使得這三條線段能圍成一個直角三角形.

答:選取的三條線段為

只變動其中兩條線段的位置,在原圖中畫出一個滿足上題的直角三角形(頂點仍在格點,并標上必要的字母).

答:畫出的直角三角形為△

所畫直角三角形的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在半徑為2的O中,弦AB長為2.

(1)求點O到AB的距離.

(2)若點C為O上一點(不與點A,B重合),求BCA的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1是一個長為2m、寬為2n的長方形,沿圖中虛線用剪刀平均分成4個小長方形,然后按圖2的形狀拼成一個正方形.

(1)2中陰影部分的面積請用兩種方法表示: ;②_________.

(2)觀察圖2,請你寫出式子(mn)2,(mn)2,mn之間的等量關系:

(3)xy=-6,xy2.75,求xy的值.

(4)觀察圖3,你能得到怎樣的代數(shù)恒等式?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程.

1)若該方程有實數(shù)根,求a的取值范圍;

2)若該方程一個根為-1,求方程的另一個根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司計劃購買若干臺電腦,現(xiàn)從兩家商場了解到同一種型號的電腦報價均為元,并且多買都有一定的優(yōu)惠. 各商場的優(yōu)惠條件如下:

甲商場優(yōu)惠條件:第一臺按原價收費,其余的每臺優(yōu)惠;

乙商場優(yōu)惠條件:每臺優(yōu)惠.

設公司購買臺電腦,選擇甲商場時, 所需費用為元,選擇乙商場時,所需費用為元,請分別求出之間的關系式.

什么情況下,兩家商場的收費相同?什么情況下,到甲商場購買更優(yōu)惠?什么情況下,到乙商場購買更優(yōu)惠?

現(xiàn)在因為急需,計劃從甲乙兩商場一共買入臺某品牌的電腦,其中從甲商場購買臺電腦.已知甲商場的運費為每臺元,乙商場的運費為每臺元,設總運費為元,在甲商場的電腦庫存只有臺的情況下,怎樣購買,總運費最少?最少運費是多少?

查看答案和解析>>

同步練習冊答案