【題目】如圖,⊙O的直徑AB的長為2,點(diǎn)C在圓周上,∠CAB=30°.點(diǎn)D是圓上一動(dòng)點(diǎn),DE∥ABCA的延長線于點(diǎn)E,連接CD,交AB于點(diǎn)F.

(1)如圖1,當(dāng)DE⊙O相切時(shí),求∠CFB的度數(shù);

(2)如圖2,當(dāng)點(diǎn)FCD的中點(diǎn)時(shí),求△CDE的面積.

【答案】(1)75°;(2).

【解析】

(1)由題意可求∠AOD=90°,即可求∠C=45°,即可求∠CFB的度數(shù);
(2)連接OC,根據(jù)垂徑定理可得AB⊥CD,利用勾股定理.以及直角三角形30度性質(zhì)求出CD、DE即可.

解:(1)如圖:連接OD

DE與⊙O相切

∴∠ODE=90°

ABDE

∴∠AOD+ODE=180°

∴∠AOD=90°

∵∠AOD=2C

C=45°

∵∠CFB=CAB+C

∴∠CFB=75°

(2)如圖:連接OC

AB是直徑,點(diǎn)FCD的中點(diǎn)

ABCD,CF=DF,

∵∠COF=2CAB=60°,

OF=OC=,CF= OF= ,

CD=2CF= ,AF=OA+OF= ,

AFAD,F(xiàn)點(diǎn)為CD的中點(diǎn),

DECD,AF為△CDE的中位線,

DE=2AF=3,

SCED×3×

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A是雙曲線y=﹣在第二象限分支上的一個(gè)動(dòng)點(diǎn),連接AO并延長交另一分支于點(diǎn)B,以AB為底作等腰ABC,且∠ACB=120°,點(diǎn)C在第一象限,隨著點(diǎn)A的運(yùn)動(dòng),點(diǎn)C的位置也不斷變化,但點(diǎn)C始終在雙曲線y上運(yùn)動(dòng),則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著人們生活水平的提高,短途旅行日趨火爆.我市某旅行社推出遼陽葫蘆島海濱觀光一日游項(xiàng)目,團(tuán)隊(duì)人均報(bào)名費(fèi)用y(元)與團(tuán)隊(duì)報(bào)名人數(shù)x(人)之間的函數(shù)關(guān)系如圖所示,旅行社規(guī)定團(tuán)隊(duì)人均報(bào)名費(fèi)用不能低于88.旅行社收到的團(tuán)隊(duì)總報(bào)名費(fèi)用為w(元).

(1)直接寫出當(dāng)x≥20時(shí),yx之間的函數(shù)關(guān)系式及自變量x的取值范圍;

(2)兒童節(jié)當(dāng)天旅行社收到某個(gè)團(tuán)隊(duì)的總報(bào)名費(fèi)為3000元,報(bào)名旅游的人數(shù)是多少?

(3)當(dāng)一個(gè)團(tuán)隊(duì)有多少人報(bào)名時(shí),旅行社收到的總報(bào)名費(fèi)最多?最多總報(bào)名費(fèi)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AB是⊙O的直徑,弦CDAB相交,∠BAC=40°.

(1)如圖1,若D為弧AB的中點(diǎn),求∠ABC和∠ABD的度數(shù);

(2)如圖2,過點(diǎn)D作⊙O的切線,與AB的延長線交于點(diǎn)P,若DPAC,求∠OCD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,△ABC的邊AC,BC分別與⊙O交于D,E,若E的中點(diǎn).

(1)求證:DE=EC;

(2)DC=2,BC=6,求⊙O的半徑

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種商品的標(biāo)價(jià)為500/件,經(jīng)過兩次降價(jià)后的價(jià)格為320/件,并且兩次降價(jià)的百分率相同.

1)求該種商品每次降價(jià)的百分率;

2)若該種商品進(jìn)價(jià)為300/件,兩次降價(jià)后共售出此種商品100件,為使兩次降價(jià)銷售的總利潤不少于3500元.問第一次降價(jià)后至少要售出該種商品多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,如果點(diǎn)P的橫坐標(biāo)和縱坐標(biāo)相等,則稱點(diǎn)P為和諧點(diǎn).例如點(diǎn)(1,1),(-,-),(-,-),…,都是和諧點(diǎn).
(1)分別判斷函數(shù)y=-2x+1y=x2+1的圖象上是否存在和諧點(diǎn),若存在,求出其和諧點(diǎn)的坐標(biāo);
(2)若二次函數(shù)y=ax2+4x+c(a≠0)的圖象上有且只有一個(gè)和諧點(diǎn)(),且當(dāng)0≤x≤m時(shí),函數(shù)y=ax2+4x+c-(a≠0)的最小值為-3,最大值為1,求m的取值范圍.
(3)直線l:y=kx+2經(jīng)過和諧點(diǎn)P,與x軸交于點(diǎn)D,與反比例函數(shù)G:y=的圖象交于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左側(cè)),若點(diǎn)P的橫坐標(biāo)為1,且DM+DN<3,請直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩家文化用品商場平時(shí)以同樣價(jià)格出售相同的商品.六一期間兩家商場都讓利酬賓,其中甲商場所有商品一律按8折出售,乙商場對一次購物中超過200元后的價(jià)格部分打7折.

1)分別寫出兩家商場購物金額(元)與商品原價(jià)(元)的函數(shù)解析式;

2)在如圖所示的直角坐標(biāo)系中畫出(1)中函數(shù)的圖象;

3)六一期間如何選擇這兩家商場購物更省錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】黃巖某校搬遷后,需要增加教師和學(xué)生的寢室數(shù)量,寢室有三類,分別為單人間(供一個(gè)人住宿),雙人間(供兩個(gè)人住宿),四人間(供四個(gè)人住宿).因?qū)嶋H需要,單人間的數(shù)量在2030之間(包括2030),且四人間的數(shù)量是雙人間的5倍.

(1)2018年學(xué)校寢室數(shù)為64個(gè),以后逐年增加,預(yù)計(jì)2020年寢室數(shù)達(dá)到121個(gè),求20182020年寢室數(shù)量的年平均增長率;

(2)若三類不同的寢室的總數(shù)為121個(gè),則最多可供多少師生住宿?

查看答案和解析>>

同步練習(xí)冊答案