【題目】為增強居民節(jié)約用水意識,某市在2018年開始對供水范圍內(nèi)的居民用水實行“階梯收費”,具體收費標準如下表:

某戶居民四月份用水10 m3時,繳納水費23元.

(1) a的值;

(2) 若該戶居民五月份所繳水費為71元,求該戶居民五月份的用水量.

【答案】(1)a的值為2.3;(2)該用戶居民五月份的用水量為28 m3.

【解析】

(1)四月份用水10 m3<22 m3,故單價為a/m.根據(jù)繳納水費為23,列出關(guān)于a的方程,即可求出a的值;

(2)當(dāng)用水量為22 m3時,水費為22×2.3=50.6<71,故五月份用水量超過22 m3;

設(shè)五月份用水量為xm3,前22m3的部分,水費為22×2.3,超過22m3的水為(x-22)m3,根據(jù)五月份所繳水費為71列出關(guān)于x的方程,求出x的值即為五月份用水量.

(1) 由題意,10a=23,解得a=,即a的值為

(2) 設(shè)用戶用水量為x m3,因為用水22 m3時,水費為22×2.3=50.6()<71元,

所以x>22,

所以

解得x=28.

答:該用戶居民五月份的用水量為28 m3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分類討論是一種非常重要的數(shù)學(xué)方法,如果一道題提供的已知條件中包含幾種情況,我們可以分情況討論來求解.例如:若|x|=2,|y|=3求x+y的值.

情況若x=2,y=3時,x+y=5

情況若x=2,y=﹣3時,x+y=﹣1

情況若x=﹣2,y=3時,x+y=1

情況若x=﹣2,y=﹣3時,x+y=﹣5

所以,x+y的值為1,﹣1,5,﹣5.

幾何的學(xué)習(xí)過程中也有類似的情況:

問題(1):已知點A,B,C在一條直線上,若AB=8,BC=3,則AC長為多少?

通過分析我們發(fā)現(xiàn),滿足題意的情況有兩種

情況當(dāng)點C在點B的右側(cè)時,如圖1,此時,AC=   

情況當(dāng)點C在點B的左側(cè)時,如圖2,此時,AC=   

通過以上問題,我們發(fā)現(xiàn),借助畫圖可以幫助我們更好的進行分類.

問題(2):如圖3,數(shù)軸上點A和點B表示的數(shù)分別是﹣1和2,點C是數(shù)軸上一點,且BC=2AB,則點C表示的數(shù)是多少?

仿照問題1,畫出圖形,結(jié)合圖形寫出分類方法和結(jié)果.

問題(3):點O是直線AB上一點,以O(shè)為端點作射線OC、OD,使AOC=60°,OCOD,求BOD的度數(shù).畫出圖形,直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題

(1)為了吸引顧客,某商家把每件100元進的一批服裝,標價定為每件498元,然后以標價的5折出售,則售價為_______元,利潤為_______元,利潤率為_______(填百分數(shù));

(2)請結(jié)合下面方程的數(shù)據(jù)在空白處填上一個合適的條件,使問題成為一個完整的打折銷售的實際問題并求解.

某商家將一件成本為200元的衣服_______標價,再按標價的x折出售,仍可獲利40元,求x.

200×(1+50%)-200=40.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝廠生產(chǎn)一種西裝和領(lǐng)帶,西裝每套定價1000元,領(lǐng)帶每條定價200元.廠方在開展促銷活動期間,向客戶提供兩種優(yōu)惠方案:①買一套西裝送一條領(lǐng)帶;②西裝和領(lǐng)帶都按定價的90%付款.現(xiàn)某客戶要到該服裝廠購買西裝20套,領(lǐng)帶x條(x>20).

(1)若該客戶按方案①購買,需付款多少元;(用含x的代數(shù)式表示)若該客戶按方案②購買,需付款多少元.(用含x的代數(shù)式表示)

(2)若x=30,通過計算說明此時按哪種方案購買較為合算?

(3)當(dāng)x=30,你能給出一種更為省錢的購買方案嗎?若有,請寫出你的購買方案和總費用;若無,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,C是⊙O上的點,且OE⊥AC于點E,過點C作⊙O的切線,交OE的延長線于點D,交AB的延長線于點F,連接AD
(1)求證:AD是⊙O的切線;
(2)若tan∠F= ,⊙O半徑為1,求線段AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠C=90°,∠A=30°

1)用尺規(guī)作圖作AB邊上的中垂線DE,交AC于點D,交AB于點E.(保留作圖痕跡,不要求寫作法和證明);

2)連接BD,求證:BD平分∠CBA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩塊大小一樣斜邊為4且含有30°角的三角板如圖水平放置.將△CDE繞C點按逆時針方向旋轉(zhuǎn),當(dāng)E點恰好落在AB上時,△CDE旋轉(zhuǎn)了度,線段CE旋轉(zhuǎn)過程中掃過的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=2x+3與x軸相交于點A,與y軸相交于點B.

(1)求A,B兩點的坐標;

(2)過B點作直線與x軸交于點P,若ABP的面積為,試求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠A=30°,C=90°,E是斜邊AB的中點,點PAC邊上一動點,若RtABC的直角邊AC=4,則PB+PE的最小值等于_____

查看答案和解析>>

同步練習(xí)冊答案