【題目】如圖所示,一段拋物線:記為,它與軸交于兩點,;將繞旋轉(zhuǎn)180°得到,交軸于;將繞旋轉(zhuǎn)180°得到,交軸于如此變換進行下去,若點在這種連續(xù)變換的圖象上,則的值為( )
A.2B.3C.D.
【答案】B
【解析】
根據(jù)題意和題目中的函數(shù)解析式,可以得到點A1的坐標,從而可以求得OA1的長度,然后根據(jù)題意,即可得到點P(17,m)中m的值和x=1時對應(yīng)的函數(shù)值相等,從而可以解答本題.
∵y=x(x4)(0≤x≤4)記為C1,它與x軸交于兩點O,A1,
令y=0,即x(x4)=0,
解得x1=0,x2=4,
∴點A1(4,0),
∴OA1=4,
∵OA1=A1A2=A2A3=A3A4,
∴OA1=A1A2=A2A3=A3A4=4,
∵點P(17,m)在這種連續(xù)變換的圖象上,
∴x=17和x=1時的函數(shù)值相等,
∴m=1×(14)=1×(3)=3,
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形的邊長為8,是的中點,是邊上的動點,連結(jié),以點為圓心,長為半徑作.
(1)當________時,;
(2)當與正方形的邊相切時,求的長;
(3)設(shè)的半徑為,請直接寫出正方形中恰好有兩個頂點在圓內(nèi)的的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線、是緊靠某湖泊的兩條相互垂直的公路,曲線段是該湖泊環(huán)湖觀光大道的一部分.現(xiàn)準備修建一條直線型公路,用以連接兩條公路和環(huán)湖觀光大道,且直線與曲線段有且僅有一個公共點.已知點到、的距離分別為和,點到的距離為,點到的距離為.若分別以、為軸、軸建立平面直角坐標系,則曲線段對應(yīng)的函數(shù)解析式為.
(1)求的值,并指出函數(shù)的自變量的取值范圍;
(2)求直線的解析式,并求出公路的長度(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小華和媽媽到大足北山游玩,身高1.5米的小華站在坡度為的山坡上的點觀看風景,恰好看到對面的多寶塔,測得眼睛看到塔頂的仰角為,接著小華又向下走了米,剛好到達坡底,這時看到塔頂的仰角為,則多寶塔的高度約為( ).(精確到0.1米,參考數(shù)據(jù):)
A.51.0米B.52.5米C.27.3米D.28.8米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小林在學習完一次函數(shù)與反比例函數(shù)的圖象與性質(zhì)后,對函數(shù)圖象與性質(zhì)研究饒有興趣,便想著將一次函數(shù)與反比例函數(shù)的解析式進行組合研究.他選取特殊的一次函數(shù)與反比例函數(shù),相加后,得到一個新的函數(shù).已知,這個新函數(shù)滿足:當時,;當時,.
(1)求出小林研究的這個組合函數(shù)的解析式;
(2)小林依照列表、描點、連線的方法在給定的平面直角坐標系內(nèi)畫出了該函數(shù)圖象的一部分,請你在圖中補全小林未畫完的部分,并根據(jù)圖象,寫出該函數(shù)圖象的一條性質(zhì);
(3)請根據(jù)你所畫的函數(shù)圖象,利用所學函數(shù)知識,直接寫出不等式的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】快車與慢車分別從甲乙兩地同時相向出發(fā),勻速而行,快車到達乙地后停留,然后按原路原速返回,快車比慢車晚到達甲地,快慢兩車距各自出發(fā)地的路程與所用的時間的關(guān)系如圖所示.
(1)由圖可知快車的速度為______;慢車的速度為______;
(2)求出發(fā)長時間后,快慢兩車距各自出發(fā)地的路程相等;
(3)快慢兩車出發(fā)多少相距?直接寫出答案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于點D,O為AB上一點,經(jīng)過點A,D的⊙O分別交AB,AC于點E,F(xiàn),連接OF交AD于點G.
(1)求證:BC是⊙O的切線;
(2)設(shè)AB=x,AF=y,試用含x,y的代數(shù)式表示線段AD的長;
(3)若BE=8,sinB=,求DG的長,
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:有一組對邊與一條對角線均相等的四邊形為對等四邊形,這條對角線又稱對等線.
(1)如圖1,在四邊形ABCD中,∠C=∠BDC,E為AB的中點,DE⊥AB.求證:四邊形ABCD是對等四邊形.
(2)如圖2,在5×4的方格紙中,A,B在格點上,請畫出一個符合條件的對等四邊形ABCD,使BD是對等線,C,D在格點上.
(3)如圖3,在圖(1)的條件下,過點E作AD的平行線交BD,BC于點F,G,連結(jié)DG,若DG⊥EG,DG=2,AB=5,求對等線BD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com