【題目】如圖,AD是等腰△ABC底邊BC上的高,點(diǎn)O是AC中點(diǎn),延長(zhǎng)DO到E

使AE∥BC,連接AE。

(1)求證:四邊形ADCE是矩形;

(2)①若AB=17,BC=16,則四邊形ADCE的面積=

②若AB=10,則BC= 時(shí),四邊形ADCE是正方形。

【答案】(1)見解析;(2)①120; ②.

【解析】試題分析:(1)根據(jù)平行四邊形的性質(zhì)得出四邊形ADCE是平行四邊形,根據(jù)垂直推出∠ADC=90°,根據(jù)矩形的判定得出即可;

2)①求出DC,根據(jù)勾股定理求出AD,根據(jù)矩形的面積公式求出即可;

要使ADCE是正方形,只需要ACDE,即∠DOC=90°,只需要OD2+OC2=DC2即可得到BC的長(zhǎng)

試題解析:(1)證明AEBC,∴∠AEO=∠CDO.又∵∠AOE=∠COD,OA=OC,∴△AOE≌△COD,∴OE=OD,而OA=OC,∴四邊形ADCE是平行四邊形.∵ADBC邊上的高,∴∠ADC=90°.∴ADCE是矩形.

2AD是等腰△ABC底邊BC上的高BC=16,AB=17,BD=CD=8AB=AC=17,ADC=90°,由勾股定理得AD===15,∴四邊形ADCE的面積是AD×DC=15×8=120

當(dāng)BC=時(shí)DC=DB=ADCE是矩形,OD=OC=5OD2+OC2=DC2,∴∠DOC=90°,ACDE,ADCE是正方形

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在由6個(gè)邊長(zhǎng)為1的小正方形組成的方格中:

1)如圖(1),A、B、C是三個(gè)格點(diǎn)(即小正方形的頂點(diǎn)),判斷ABBC的關(guān)系,并說(shuō)明理由;

2)如圖(2),連結(jié)三格和兩格的對(duì)角線,求∠α+β的度數(shù)(要求:畫出示意圖并給出證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】幻方起源于中國(guó),傳說(shuō)在大禹治水時(shí),有只神龜在洛水中浮起,龜背上有奇特的圖案,如圖1,人們稱之為洛書.如果將龜背上的數(shù)字翻譯出來(lái),如圖2

觀察發(fā)現(xiàn),圖2的每行、每列、每條對(duì)角線的三個(gè)數(shù)之和都是15.像這樣,在3×3的方陣圖中,每行、每列、每條對(duì)角線上3個(gè)數(shù)的和都相等,我們就稱它為三階幻方.上面的三階幻方中,15是這個(gè)幻方的和,簡(jiǎn)稱幻和.5是幻方最中心的數(shù)字,簡(jiǎn)稱中心數(shù).

1)用﹣10,﹣8,﹣6,﹣4,﹣2,0,24,6這九個(gè)數(shù)字補(bǔ)全圖3中的幻方;

2)如圖4是一個(gè)三階幻方,試確定圖4x的值,并給出求解過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線lx軸相交于點(diǎn)M(3,0),與y軸相交于點(diǎn)N(0,4),點(diǎn)AMN的中點(diǎn),反比例函數(shù)y=(x0)的圖象過(guò)點(diǎn)A.

(1)求直線l和反比例函數(shù)的解析式;

(2)在函數(shù)y=(k0)的圖象上取異于點(diǎn)A的一點(diǎn)C,作CBx軸于點(diǎn)B,連接OC交直線l于點(diǎn)P,若△ONP的面積是△OBC面積的3倍,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】20183月,某市教育主管部門在初中生中開展了文明禮儀知識(shí)競(jìng)賽活動(dòng),活動(dòng)結(jié)束后,隨機(jī)抽取了部分同學(xué)的成績(jī)(x均為整數(shù),總分100分),繪制了如下尚不完整的統(tǒng)計(jì)圖表.

調(diào)查結(jié)果統(tǒng)計(jì)表

組別

 成績(jī)分組(單位:分)

 頻數(shù)

 頻率

 A

 80x85

 50

 0.1

 B

 85x90

 75

 C

 90x95

 150

 c

 D

 95x100

 a

 合計(jì)

 b

1

根據(jù)以上信息解答下列問(wèn)題:

(1)統(tǒng)計(jì)表中,a=_____,b=_____,c=_____;

(2)扇形統(tǒng)計(jì)圖中,m的值為_____,“C”所對(duì)應(yīng)的圓心角的度數(shù)是_____;

(3)若參加本次競(jìng)賽的同學(xué)共有5000人,請(qǐng)你估計(jì)成績(jī)?cè)?/span>95分及以上的學(xué)生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為探測(cè)某座山的高度AB,某飛機(jī)在空中C處測(cè)得山頂A處的俯角為31°,此時(shí)飛機(jī)的飛行高度為CH=4千米;保持飛行高度與方向不變,繼續(xù)向前飛行2千米到達(dá)D處,測(cè)得山頂A處的俯角為50°,求此山的高度AB.(參考數(shù)據(jù):tan31°≈0.6,1an50°≈1.2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)分別交y軸、x 軸于AB兩點(diǎn),拋物線過(guò)A、B兩點(diǎn).

1)求這個(gè)拋物線的解析式;

2)作垂直x軸的直線x=t,在第一象限交直線AB于點(diǎn)M,交這個(gè)拋物線于點(diǎn)N.求當(dāng)t 取何值時(shí),MN有最大值?最大值是多少?

3)在2)的情況下,以A、MN、D為頂點(diǎn)作平行四邊形,求第四個(gè)頂點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1

1)求3A+6B

2)若3A+6B的值與x無(wú)關(guān),求y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角梯形OABC中,BC∥AO,∠AOC=90°,點(diǎn)A,B的坐標(biāo)分別為(5,0), (2,6),點(diǎn)D為AB上一點(diǎn),且BD=2AD,雙曲線y=(k>0)經(jīng)過(guò)點(diǎn)D,交BC于點(diǎn)E.

(1)求雙曲線的解析式;

(2)求四邊形ODBE的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案