【題目】數(shù)學(xué)活動﹣旋轉(zhuǎn)變換
(1)如圖①,在△ABC中,∠ABC=130°,將△ABC繞點C逆時針旋轉(zhuǎn)50°得到△A′B′C,連接BB′,求∠A′B′B的大;
(2)如圖②,在△ABC中,∠ABC=150°,AB=3,BC=5,將△ABC繞點C逆時針旋轉(zhuǎn)60°得到△A′B′C,連接BB′,以A′為圓心,A′B′長為半徑作圓.
(Ⅰ)猜想:直線BB′與⊙A′的位置關(guān)系,并證明你的結(jié)論;
(Ⅱ)連接A′B,求線段A′B的長度;
(3)如圖③,在△ABC中,∠ABC=α(90°<α<180°),AB=m,BC=n,將△ABC繞點C逆時針旋轉(zhuǎn)2β角度(0°<2β<180°)得到△A′B′C,連接A′B和BB′,以A′為圓心,A′B′長為半徑作圓,問:角α與角β滿足什么條件時,直線BB′與⊙A′相切,請說明理由,并求此條件下線段A′B的長度(結(jié)果用角α或角β的三角函數(shù)及字母m、n所組成的式子表示)
【答案】(1)65°;(2)切線;證明過程見解析;;(3)當(dāng)α+β=180°時,直線BB′、是⊙A′的切線;
【解析】
試題分析:(1)根據(jù)∠A′B′B=∠A′B′C﹣∠BB′C,只要求出∠A′B′B即可;(2)(Ⅰ)結(jié)論:直線BB′、是⊙A′的切線.只要證明∠A′B′B=90°即可.(Ⅱ)在RT△ABB′中,利用勾股定理計算即可;(3)如圖③中,當(dāng)α+β=180°時,直線BB′、是⊙A′的切線.只要證明∠A′B′B=90°即可解決問題.在△CBB′中求出BB′,再在RT△A′B′B中利用勾股定理即可.
試題解析:(1)如圖①中,∵△A′B′C是由△ABC旋轉(zhuǎn)得到, ∴∠A′B′C=∠ABC=130°,CB=CB′,
∴∠CBB′=∠CB′B,∵∠BCB′=50°, ∴∠CBB′=∠CB′B=65°,
∴∠A′B′B=∠A′B′C﹣∠BB′C=65°.
(2)(Ⅰ)結(jié)論:直線BB′、是⊙A′的切線.
理由:如圖②中,∵∠A′B′C=∠ABC=150°,CB=CB′, ∴∠CBB′=∠CB′B,∵∠BCB′=60°,
∴∠CBB′=∠CB′B=60°, ∴∠A′B′B=∠A′B′C﹣∠BB′C=90°. ∴AB′⊥BB′,
∴直線BB′、是⊙A′的切線.
(Ⅱ)∵在RT△ABB′中,∵∠AB′B=90°,BB′=BC=5,AB′=AB=3,
∴A′B==.
(3)如圖③中,當(dāng)α+β=180°時,直線BB′、是⊙A′的切線.
理由:∵∠A′B′C=∠ABC=α,CB=CB′, ∴∠CBB′=∠CB′B,∵∠BCB′=2β,
∴∠CBB′=∠CB′B=, ∴∠A′B′B=∠A′B′C﹣∠BB′C=α﹣90°+β=180°﹣90°=90°.
∴AB′⊥BB′, ∴直線BB′、是⊙A′的切線. 在△CBB′中∵CB=CB′=n,∠BCB′=2β,
∴BB′=2nsinβ, 在RT△A′BB′中,A′B==.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=6,O是AB的中點,直線l經(jīng)過點O,∠1=120°,P是直線l上一點。當(dāng)△APB為直角三角形時,AP= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個數(shù)為三位數(shù),十位數(shù)字是a,個位數(shù)字比a小2,百位數(shù)字是a的2倍,則這個三位數(shù)可表示:( )
A. 21a-2 B. 211a-2 C. 200a-2 D. 3a-2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某學(xué)校開展“遠(yuǎn)是君山,磨礪意志,保護(hù)江豚,愛鳥護(hù)鳥”為主題的遠(yuǎn)足活動.已知學(xué)校與君山島相距24千米,遠(yuǎn)足服務(wù)人員騎自行車,學(xué)生步行,服務(wù)人員騎自行車的平均速度是學(xué)生步行平均速度的2.5倍,服務(wù)人員與學(xué)生同時從學(xué)校出發(fā),到達(dá)君山島時,服務(wù)人員所花時間比學(xué)生少用了3.6小時,求學(xué)生步行的平均速度是多少千米/小時.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與坐標(biāo)軸交于A、B、C三點,其中點A的坐標(biāo)為(0,8),點B的坐標(biāo)為(﹣4,0).
(1)求該二次函數(shù)的表達(dá)式及點C的坐標(biāo);
(2)點D的坐標(biāo)為(0,4),點F為該二次函數(shù)在第一象限內(nèi)圖象上的動點,連接CD、CF,以CD、CF為鄰邊作平行四邊形CDEF,設(shè)平行四邊形CDEF的面積為S.
①求S的最大值;
②在點F的運動過程中,當(dāng)點E落在該二次函數(shù)圖象上時,請直接寫出此時S的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com