【題目】如圖,為探測(cè)某座山的高度AB,某飛機(jī)在空中C處測(cè)得山頂A處的俯角為31°,此時(shí)飛機(jī)的飛行高度為CH=4千米;保持飛行高度與方向不變,繼續(xù)向前飛行2千米到達(dá)D處,測(cè)得山頂A處的俯角為50°.求此山的高度AB.(參考數(shù)據(jù):tan31°≈0.6,tan50°≈1.2)

【答案】山的高度AB約為1.6千米

【解析】

試題設(shè)AE=x,則在RtADE中,可表示出CE.在RtACE中,可表示出AE,繼而根據(jù)AB=BE-AE,可得出方程,解出即可得出答案.

試題解析:解:由題意知CH=BE=4千米.設(shè)AE=x千米.

RtADE中,∵∠ADE =50°, ,∴

RtACE中,∵∠ACE =31°,∴,即.解得:x=2.4

AB=BE-AE=4-2.4=1.6(米).

答:山的高度AB約為1.6千米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,ABBCECD邊的中點(diǎn),將△ADE繞點(diǎn)E順時(shí)針旋轉(zhuǎn)180°,點(diǎn)D的對(duì)應(yīng)點(diǎn)為C,點(diǎn)A的對(duì)應(yīng)點(diǎn)為F,過(guò)點(diǎn)EMEAFBC于點(diǎn)M,連接AM、BD交于點(diǎn)N,現(xiàn)有下列結(jié)論:

AM=AD+MC;②AM=DE+BM;③DE2=ADCM;④點(diǎn)N為△ABM的外心.其中正確的個(gè)數(shù)為( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC為等邊三角形,D、E分別是ACBC上的點(diǎn),且ADCE,AEBD相交于點(diǎn)PBFAE于點(diǎn)F.若PF4,PD1,則AE的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1,等腰和等腰中,,,三點(diǎn)在同一直線上,求證:;

2)如圖2,等腰中,,是三角形外一點(diǎn),且,求證:;

3)如圖3,等邊中,是形外一點(diǎn),且,

的度數(shù)為 ;

之間的關(guān)系是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】多好佳水果店在批發(fā)市場(chǎng)購(gòu)買(mǎi)某種水果銷(xiāo)售,第一次用1500元購(gòu)進(jìn)若干千克,并以每千克9元出售,很快售完.由于水果暢銷(xiāo),第二次購(gòu)買(mǎi)時(shí),每千克的進(jìn)價(jià)比第一次提高了10%,用1694元所購(gòu)買(mǎi)的水果比第一次多20千克,以每千克10元售出100千克后,因出現(xiàn)高溫天氣,水果不易保鮮,為減少損失,便降價(jià)45%售完剩余的水果.

(1)第一次水果的進(jìn)價(jià)是每千克多少元?

(2)該水果店在這兩次銷(xiāo)售中,總體上是盈利還是虧損?盈利或虧損了多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,點(diǎn)的中點(diǎn),點(diǎn)、分別在上,且,下列結(jié)論:①是等腰直角三角形;②;③;④.其中正確的是( )

A.①②④B.②③④C.①②③D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以G(0,1)為圓心,半徑為2的圓與x軸交于A、B兩點(diǎn),與y軸交于C,D兩點(diǎn),點(diǎn)E⊙O上一動(dòng)點(diǎn),CF⊥AEF,則弦AB的長(zhǎng)度為________;點(diǎn)E在運(yùn)動(dòng)過(guò)程中,線段FG的長(zhǎng)度的最小值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小華同學(xué)對(duì)圖形旋轉(zhuǎn)前后的線段之間、角之間的關(guān)系進(jìn)行了拓展探究.

(一)猜測(cè)探究

在△ABC中,ABAC,M是平面內(nèi)任意一點(diǎn),將線段AM繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)與∠BAC相等的角度,得到線段AN,連接NB

1)如圖1,若M是線段BC上的任意一點(diǎn),請(qǐng)直接寫(xiě)出∠NAB與∠MAC的數(shù)量關(guān)系是_______,NBMC的數(shù)量關(guān)系是_______;

2)如圖2,點(diǎn)EAB延長(zhǎng)線上點(diǎn),若M是∠CBE內(nèi)部射線BD上任意一點(diǎn),連接MC,(1)中結(jié)論是否仍然成立?若成立,請(qǐng)給予證明,若不成立,請(qǐng)說(shuō)明理由。

(二)拓展應(yīng)用

如圖3,在△A1B1C1中,A1B18,∠A1B1C190°,∠C130°,PB1C1上的任意點(diǎn),連接A1P,將A1P繞點(diǎn)A1按順時(shí)針?lè)较蚵棉D(zhuǎn)60°,得到線段A1Q,連接B1Q.求線段B1Q長(zhǎng)度的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC,ACB=90°,AC=BC,點(diǎn)EAC上一點(diǎn),連接BE

1)如圖1,AB=,BE=5,AE的長(zhǎng)

2)如圖2,點(diǎn)D是線段BE延長(zhǎng)線上一點(diǎn)過(guò)點(diǎn)AAFBD于點(diǎn)F,連接CD、CF,當(dāng)AF=DF時(shí)求證:DC=BC

查看答案和解析>>

同步練習(xí)冊(cè)答案