【題目】如圖,正方形ABCD和正方形AEFG,邊AE在邊AB上,AB2AE2.將正方形AEFG繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,BE的延長(zhǎng)線(xiàn)交直線(xiàn)DG于點(diǎn)P ,旋轉(zhuǎn)過(guò)程中點(diǎn)P運(yùn)動(dòng)的路線(xiàn)長(zhǎng)為_______

【答案】

【解析】試題解析:在△DAG和△BAE

∴△DAG≌△BAE(SAS)

∴∠ADG=ABE,

如圖1,∵∠1=2,

連接BD,則△BPD是以BD為斜邊的直角三角形,

設(shè)BD的中點(diǎn)為O,連接OP,

∴旋轉(zhuǎn)過(guò)程中,點(diǎn)P運(yùn)動(dòng)的路線(xiàn)是以O為圓心,以OP為半徑的一段弧,

如圖2,當(dāng)邊AE在邊AB上時(shí),PA重合,當(dāng)時(shí),設(shè)AB的中點(diǎn)為M,連接ME,

∴△AEM是等邊三角形,

B、E.F三點(diǎn)共線(xiàn),

PF重合,

連接AF,可得△OFA是等邊三角形,

∴點(diǎn)P運(yùn)動(dòng)的路線(xiàn)長(zhǎng)為:

故答案為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校計(jì)劃購(gòu)買(mǎi)若干臺(tái)電腦,現(xiàn)從兩家商場(chǎng)了解到同一種型號(hào)的電腦報(bào)價(jià)均為6000元,并且多買(mǎi)都有一定的優(yōu)惠.各商場(chǎng)的優(yōu)惠條件如下表所示:

商場(chǎng)

優(yōu)惠條件

甲商場(chǎng)

第一臺(tái)按原價(jià)收費(fèi),其余的每臺(tái)優(yōu)惠25%

乙商場(chǎng)

每臺(tái)優(yōu)惠20%

(1)設(shè)學(xué)校購(gòu)買(mǎi)臺(tái)電腦,選擇甲商場(chǎng)時(shí),所需費(fèi)用為元,選擇乙商場(chǎng)時(shí),所需費(fèi)用為元,請(qǐng)分別求出,之間的關(guān)系式.

(2)什么情況下,兩家商場(chǎng)的收費(fèi)相同?什么情況下,到甲商場(chǎng)購(gòu)買(mǎi)更優(yōu)惠?什么情況下,到乙商場(chǎng)購(gòu)買(mǎi)更優(yōu)惠?

(3)現(xiàn)在因?yàn)榧毙瑁?jì)劃從甲乙兩商場(chǎng)一共買(mǎi)入10臺(tái)電腦,已知甲商場(chǎng)的運(yùn)費(fèi)為每臺(tái)50元,乙商場(chǎng)的運(yùn)費(fèi)為每臺(tái)60元,設(shè)總運(yùn)費(fèi)為元,從甲商場(chǎng)購(gòu)買(mǎi)臺(tái)電腦,在甲商場(chǎng)的庫(kù)存只有4臺(tái)的情況下,怎樣購(gòu)買(mǎi),總運(yùn)費(fèi)最少?最少運(yùn)費(fèi)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別為6,6)、(6,0).拋物線(xiàn)的頂點(diǎn)P在折線(xiàn)OAAB上運(yùn)動(dòng).

1當(dāng)點(diǎn)P在線(xiàn)段OA上運(yùn)動(dòng)時(shí),拋物線(xiàn)y軸交點(diǎn)坐標(biāo)為0,c.

①用含m的代數(shù)式表示n

c的取值范圍;

2當(dāng)拋物線(xiàn)經(jīng)過(guò)點(diǎn)B時(shí),求拋物線(xiàn)所對(duì)應(yīng)的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】讀句畫(huà)圖并完成計(jì)算:如圖,直線(xiàn)AB與直線(xiàn)CD交于點(diǎn)C ,

(1)過(guò)點(diǎn)PPQCD,交AB于點(diǎn)Q;

(2)過(guò)PPRCD于點(diǎn)R

(3)若∠DCB=150,求∠PQC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,點(diǎn)0為直線(xiàn)AB上一點(diǎn),∠AOC=50,OD平分∠AOC,∠DOE=90

(1)請(qǐng)你數(shù)一數(shù),圖中有多少個(gè)小于平角的角:

(2)求出∠BOD的度數(shù);

(3)試判斷OE是否平分∠BOC,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(﹣44),點(diǎn)B的坐標(biāo)為(0,2).

1)求直線(xiàn)AB的解析式;

2)如圖,以點(diǎn)A為直角頂點(diǎn)作∠CAD90°,射線(xiàn)ACx軸于點(diǎn)C,射線(xiàn)ADy軸于點(diǎn)D.當(dāng)∠CAD繞著點(diǎn)A旋轉(zhuǎn),且點(diǎn)Cx軸的負(fù)半軸上,點(diǎn)Dy軸的負(fù)半軸上時(shí),OCOD的值是否發(fā)生變化?若不變,求出它的值;若變化,求出它的變化范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:∠MON30°,點(diǎn)A1、A2、A3在射線(xiàn)ON上,點(diǎn)B1、B2、B3在射線(xiàn)OM上,A1B1A2A2B2A3、A3B3A4均為等邊三角形,若OA11,則A7B7A8的邊長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】每年的6月5日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購(gòu)買(mǎi)10臺(tái)節(jié)省能源的新設(shè)備,現(xiàn)有甲、乙兩種型號(hào)的設(shè)備可供選購(gòu). 經(jīng)調(diào)查:購(gòu)買(mǎi)3臺(tái)甲型設(shè)備比購(gòu)買(mǎi)2臺(tái)乙型設(shè)備多花16萬(wàn)元,購(gòu)買(mǎi)2臺(tái)甲型設(shè)備比購(gòu)買(mǎi)3臺(tái)乙型設(shè)備少花6萬(wàn)元.

(1)求甲、乙兩種型號(hào)設(shè)備的價(jià)格;

(2)該公司經(jīng)預(yù)算決定購(gòu)買(mǎi)節(jié)省能源的新設(shè)備的資金不超過(guò)110萬(wàn)元,你認(rèn)為該公司有哪幾種購(gòu)買(mǎi)方案;

(3)在(2)的條件下,已知甲型設(shè)備的產(chǎn)量為240噸/月,乙型設(shè)備的產(chǎn)量為180噸/月.若每月要求總產(chǎn)量不低于2040噸,為了節(jié)約資金,請(qǐng)你為該公司設(shè)計(jì)一種最省錢(qián)的購(gòu)買(mǎi)方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一個(gè)由正奇數(shù)排成的數(shù)陣.用如圖所示的四邊形框去框住四個(gè)數(shù).

(1)若設(shè)框住四個(gè)數(shù)中左上角的數(shù)為n,則這四個(gè)數(shù)的和為  (n的代數(shù)式表示);

(2)平行移動(dòng)四邊形框,若框住四個(gè)數(shù)的和為228,求出這4個(gè)數(shù);

(3)平行移動(dòng)四邊形框,能否使框住四個(gè)數(shù)的和為508?若能,求出這4個(gè)數(shù);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案