【題目】為迎接暑假旅游高峰的到來,某旅游紀(jì)念品商店決定購進A、B兩種紀(jì)念品.若購進A種紀(jì)念品7件,B種紀(jì)念品4件,需要760元;若購進A種紀(jì)念品5件.B種紀(jì)念品8件,需要800元.
(1)求購進A、B兩種紀(jì)念品每件各需多少元?
(2)若該商店決定購進這兩種紀(jì)念品共100件.考慮市場需求和資金周轉(zhuǎn),這100件紀(jì)念品的資金不少于7000元,但不超過7200元,那么該商店共有幾種進貨方案?
(3)若銷售A種紀(jì)念品每件可獲利潤30元,B種紀(jì)念品每件可獲利潤20元,用(2)中的進貨方案,哪一種方案可獲利最大?最大利潤是多少元?
【答案】(1)進A種紀(jì)念品每件需要80元,購進B種紀(jì)念品每件需要50元;(2)該商店共有7種進貨方案;(3)2730元
【解析】
(1)根據(jù)關(guān)系式:A種紀(jì)念品7件需要錢數(shù)+B種紀(jì)念品4件需要錢數(shù)=760元,A種紀(jì)念品 5 件所需錢數(shù)+ B 種紀(jì)念品 8件所需錢數(shù)=800元,列出二元一次方程組,解之即可.
(2)根據(jù)關(guān)系式:用于購買這 100 件紀(jì)念品的資金不少于 7000 元,但不超過 7200 元,列出不等式組,解之即可.
(3)設(shè)總利潤為W元,列出W關(guān)于a的一次函數(shù)表達(dá)式,根據(jù)一次函數(shù)的性質(zhì)可得結(jié)果.
解:(1)設(shè)購進A種紀(jì)念品每件需要x元,購進B種紀(jì)念品每件需要y元,
由題意,得
,
解得: .
答:進A種紀(jì)念品每件需要80元,購進B種紀(jì)念品每件需要50元;
(2)設(shè)該商店購進A種紀(jì)念品a件,則購進B種紀(jì)念品(100﹣a)件,由題意,得
,
解得: .
∵a為整數(shù),
∴a=67,68,69,70,71,72,73.
∴該商店共有7種進貨方案;
(3)設(shè)總利潤為W元,由題意,得
W=30a+20(100﹣a)=10a+2000.
∴k=10>0,
∴W隨x的增大而增大,
∴該商店購進A種紀(jì)念品73件,購進B種紀(jì)念品27套,W最大=10×73+2000=2730元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,OA⊥OB,AB⊥x軸于點C,點A(,1)在反比例函數(shù)的圖象上.
(1)求反比例函數(shù)的表達(dá)式;
(2)在x軸的負(fù)半軸上存在一點P,使得S△AOP=S△AOB,求點P的坐標(biāo);
(3)若將△BOA繞點B按逆時針方向旋轉(zhuǎn)60°得到△BDE.直接寫出點E的坐標(biāo),并判斷點E是否在該反比例函數(shù)的圖象上,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,CE與AB相交于F.
(1)求證:△CEB≌△ADC;
(2)若AD=9cm,DE=6cm,求BE及EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓心為M的量角器的直徑的兩個端點A,B分別在x軸,y軸正半軸上(包括原點O),AB=4.點P,Q分別在量角器60°,120°刻度線外端,連結(jié)MP.量角器從點A與點Q重合滑動至點Q與點O重合的過程中,線段MP掃過的面積為( )
A.π+B.πC.π+2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為推廣勞動教育,美化校園環(huán)境,學(xué)校決定在農(nóng)場基地鋪設(shè)一條觀景小道.經(jīng)設(shè)計,鋪設(shè)這條小道需A,B兩種型號石磚共200塊.已知:購買3塊A型石磚,2塊B型石磚需要110元;購買5塊A型石磚,4塊B型石磚需要200元.
(1)求A,B兩種型號石磚單價各為多少元?
(2)已知B型石磚正在進行促銷活動:購買B型石磚數(shù)量在60塊以內(nèi)(包括60塊)時,不優(yōu)惠;購買B型石磚數(shù)量超過60塊時,每超過1塊,購買的所有B型石磚單價均降0.05元,問:學(xué)校采購石磚,最多需要多少預(yù)算經(jīng)費?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+mx+n與直線y=﹣x+3交于A,B兩點,交x軸與D,C兩點,連接AC,BC,已知A(0,3),C(3,0).
(Ⅰ)求拋物線的解析式和tan∠BAC的值;
(Ⅱ)在(Ⅰ)條件下:
(1)P為y軸右側(cè)拋物線上一動點,連接PA,過點P作PQ⊥PA交y軸于點Q,問:是否存在點P使得以A,P,Q為頂點的三角形與△ACB相似?若存在,請求出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.
(2)設(shè)E為線段AC上一點(不含端點),連接DE,一動點M從點D出發(fā),沿線段DE以每秒一個單位速度運動到E點,再沿線段EA以每秒個單位的速度運動到A后停止,當(dāng)點E的坐標(biāo)是多少時,點M在整個運動中用時最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)(k1、b為常數(shù),k1≠0)的圖象與反比例函數(shù)的圖象交于點A(m,8)與點B(4,2).
①求一次函數(shù)與反比例函數(shù)的解析式.
②根據(jù)圖象說明,當(dāng)x為何值時,.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,已知點A(8,0)和點B(0,6),點C是AB的中點,點P在折線AOB上,直線CP截△AOB,所得的三角形與△AOB相似,那么點P的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校七年級甲班、乙班舉行一分鐘投籃比賽,每班派10名學(xué)生參賽,在規(guī)定時間內(nèi)進球數(shù)不少于8個為優(yōu)秀學(xué)生.比賽數(shù)據(jù)的統(tǒng)計圖表如下(數(shù)據(jù)不完整):
根據(jù)以上信息,解答下列問題:
(1)直接寫出a,b,c的值.
(2)你認(rèn)為哪個班的比賽成績要好一些?請簡要說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com