【題目】如圖,在等邊△ABC中,點D,E分別在邊BCAC上,且AE=CD,BEAD相交于點P,BQAD于點Q

(1)求證:AD=BE;

(2)求∠PBQ的度數(shù);

(3)若PQ=3,PE=1,求AD的長.

【答案】(1)證明詳見解析;(2)∠PBQ=30°;(3)AD=7.

【解析】

1)根據(jù)等邊三角形的性質(zhì)通過全等三角形的判定定理SAS證得△AEB≌△CDA,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論

2)利用(1)中的全等三角形的對應角相等和三角形外角的性質(zhì)求得∠BPQ=60°,再由直角三角形兩銳角互余即可得到結(jié)論;

3)由30度角所對的直角邊是斜邊的一半得到2PQ=BP=6,則易求BE=BP+PE=7

1∵△ABC為等邊三角形AB=CA,BAE=C=60°.

AEB與△CDA中,∵,∴△AEB≌△CDASAS),∴AD=BE

2)由(1)知,AEB≌△CDA,則∠ABE=CAD,∴∠BAD+∠ABE=BAD+∠CAD=BAC=60°,∴∠BPQ=BAD+∠ABE=60°.

RtPBQ,∠PBQ=90°-∠BPQ=90°-60°=30°;

3)∵PBQ=30°,PQ=BP=3,BP=6BE=BP+PE=7,AD=7

故答案為:7

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某電信部門計劃修建一條連接B、C兩地的電纜.測量人員在山腳A點測得B、C兩地的仰角分別為30°、45°,在B地測得C地的仰角為60°.已知C地比A地高200m,電纜BC至少長多少米(精確到1m)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OA⊥OC,OB⊥OD,∠AOD=5∠BOC,則∠AOD等于____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】函數(shù) 的圖象如圖所示,則結(jié)論: ①兩函數(shù)圖象的交點A的坐標為(2,2);
②當x>2時,y2>y1;
③當x=1時,BC=3;
④當x逐漸增大時,y1隨著x的增大而增大,y2隨著x的增大而減。
其中正確結(jié)論的序號是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC在平面直角坐標系中,點AB、C的坐標分別為A(﹣21),B(﹣45),C(﹣52).

1)作△ABC關(guān)于y對稱的△A1B1C1,其中,點A、B、C的對應點分別為A1、B1C1(不要求寫作法);

2)寫出點A1、B1C1的坐標;

3)計算△A1B1C1的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】分類討論,在平面直角坐標系中,已知A(2,3),B(0,2),C(3,0).將三角形ABC的一個頂點平移到坐標原點O處,寫出平移方法和另兩個對應頂點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地為提倡節(jié)約用水,準備實行自來水“階梯計費”方式,用戶用水不超出基本用水量的部分享受基本價格,超出基本用水量的部分實行加價收費,為更好地決策,自來水公司隨機抽取部分用戶的用適量數(shù)據(jù),并繪制了如下不完整統(tǒng)計圖(每組數(shù)據(jù)包括右端點但不包括左端點),請你根據(jù)統(tǒng)計圖解決下列問題:

(1)此次調(diào)查抽取了多少用戶的用水量數(shù)據(jù)?

(2)補全頻數(shù)分直方圖,求扇形統(tǒng)計圖中“25噸~30噸”部分的圓心角度數(shù);

(3)如果自來水公司將基本用水量定為每戶25噸,那么該地20萬用戶中約有多少用戶的用水全部享受基本價格?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ADABC的高線,AD=BC,以AB為底邊作等腰RtABE,連接ED,EC,延長CEADF點,下列結(jié)論:①△ADE≌△BCE;CEDE;BD=AF;SBDE=SACE,其中正確的有( 。

A. ①③ B. ①②④ C. ①②③④ D. ①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先化簡,再求值:

(1)-a2b+(3ab2-a2b)-2(2ab2-a2b),其中a=1,b=-2;

(2)-6x+3(3x2-1)-(9x2-x+3),其中x=-.

查看答案和解析>>

同步練習冊答案