【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,對(duì)稱軸為x=,且經(jīng)過點(diǎn)(2,0),有下列說法:①abc<0;②a+b=0;③a﹣b+c=0;④若(0,y1),(1,y2)是拋物線上的兩點(diǎn),則y1=y2.上述說法正確的是(

A.①②③④ B.③④ C.①③④ D.①②

【答案】A

【解析】

試題分析:根據(jù)二次函數(shù)的圖象開口向下,可得a<0,二次函數(shù)的圖象交y軸的正半軸于一點(diǎn),可知c>0,對(duì)稱軸是直線x=,可得,因此可知b=﹣a>0,abc<0.故①正確;

由①中知b=﹣a,可得a+b=0,故②正確;

由對(duì)稱軸為x=,點(diǎn)(2,0)的對(duì)稱點(diǎn)是(﹣1,0),可知當(dāng)x=﹣1時(shí),y=0,即a﹣b+c=0.故③正確;

再由(0,y1)關(guān)于直線x=的對(duì)稱點(diǎn)的坐標(biāo)是(1,y1),可得y1=y2.故④正確;

綜上所述,正確的結(jié)論是①②③④.

故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,已知點(diǎn)A,0)、B01),對(duì)OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形(1)、三角形(2)、三角形(3)、三角形(4)……則三角形(2020)的直角頂點(diǎn)的橫坐標(biāo)為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等邊邊長為邊上一點(diǎn),,且、分別于邊交于點(diǎn)、

如圖,當(dāng)點(diǎn)的三等分點(diǎn),且時(shí),判斷的形狀;

如圖,若點(diǎn)邊上運(yùn)動(dòng),且保持,設(shè),四邊形面積的,求的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

如圖,若點(diǎn)邊上運(yùn)動(dòng),且繞點(diǎn)旋轉(zhuǎn),當(dāng)時(shí),求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的盒子里,裝有四個(gè)分別寫有數(shù)字、、的乒乓球(形狀、大小一樣),先從盒子里隨機(jī)摸出一個(gè)乒乓球,記下數(shù)字后放回盒子,搖勻后再隨機(jī)摸出一個(gè)乒乓球,記下數(shù)字.

請(qǐng)用樹形圖或列表法求兩次摸出乒乓球上的數(shù)字相同的概率;

若再向盒子里放入個(gè)寫有數(shù)字的乒乓球,使得從盒子里隨機(jī)摸出一個(gè)乒乓球,摸到寫有數(shù)字的乒乓球的概率為,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】超速行駛是引發(fā)交通事故的主要原因.上周末,小明和三位同學(xué)嘗試用自己所學(xué)的知識(shí)檢測車速,如圖,觀測點(diǎn)設(shè)在到縣城城南大道的距離為米的點(diǎn)處.這時(shí),一輛出租車由西向東勻速行駛,測得此車從處行駛到處所用的時(shí)間為秒,且

、之間的路程;

請(qǐng)判斷此出租車是否超過了城南大道每小時(shí)千米的限制速度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了響應(yīng)低碳環(huán)保,綠色出行的公益活動(dòng),小燕和媽媽決定周日騎自行車去圖書館借書.她們同時(shí)從家出發(fā),小燕先以150/分的速度騎行一段時(shí)間,休息了5分鐘,再以m/分鐘的速度到達(dá)圖書館,而媽媽始終以120/分鐘的速度騎行,兩人行駛的路程y(米)與時(shí)間x(分鐘)的關(guān)系如圖,請(qǐng)結(jié)合圖像,解答下列問題:

1)圖書館到小燕家的距離是 米;

2a= ,b= ,m= ;

3)媽媽行駛的路程y(米)關(guān)于時(shí)間x(分鐘)的函數(shù)解析式是 ;定義域是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】3分)在同一平面直角坐標(biāo)系中,函數(shù)y=ax2+bxy=bx+a的圖象可能是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是正三角形ABC內(nèi)的一點(diǎn),且PA6,PB8PC10.若將△PAC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后,得到△PAB

1)求點(diǎn)P與點(diǎn)P′之間的距離;

2)求∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某景區(qū)在同一線路上順次有三個(gè)景點(diǎn)A,B,C,甲、乙兩名游客從景點(diǎn)A出發(fā),甲步行到景點(diǎn)C;乙花20分鐘時(shí)間排隊(duì)后乘觀光車先到景點(diǎn)B,在B處停留一段時(shí)間后,再步行到景點(diǎn)C.甲、乙兩人離景點(diǎn)A的路程s(米)關(guān)于時(shí)間t(分鐘)的函數(shù)圖像如圖所示.

(1)甲的速度是 米/分鐘;

(2)當(dāng)20≤t ≤30時(shí),求乙離景點(diǎn)A的路程s與t的函數(shù)表達(dá)式;

(3)乙出發(fā)后多長時(shí)間與甲在途中相遇?

(4)若當(dāng)甲到達(dá)景點(diǎn)C時(shí),乙與景點(diǎn)C的路程為360米,則乙從景點(diǎn)B步行到景點(diǎn)C的速度是多少?

查看答案和解析>>

同步練習(xí)冊答案