【題目】如圖,與的AC邊相切于點(diǎn)C,與AB、BC邊分別交于點(diǎn)D、E,,CE是的直徑.
(1)求證:AB是的切線;
(2)若求AC的長(zhǎng).
【答案】(1)證明見(jiàn)解析 (2).
【解析】
(1)連接OD、CD,根據(jù)圓周角定理得出,根據(jù)平行線的性質(zhì)得出,根據(jù)垂徑定理得出OA垂直平分CD,根據(jù)垂直平分線的性質(zhì)得出,然后根據(jù)等腰三角形的三線合一的性質(zhì)得出,進(jìn)而證得,得到,即可證得結(jié)論;
(2)易證△BED∽△BDC,求得BE,得到BC,然后根據(jù)切線長(zhǎng)定理和勾股定理列出關(guān)于y的方程,解方程即可.
證明:連接OD、CD,
∵CE是的直徑,
∴,
∵,
∴,
∴OA垂直平分CD,
∴,
∴,
∴,
∵,
∴,,
∴,
∵AC是切線,
∴,
在和中
,
∴,
∴,
∵OD是半徑,
∴AB是的切線;
(2)解:∵BD是切線,易證△BED∽△BDC,
∴,
設(shè),∵
∴,
解得或(舍去),
∴,
∴,
∵AD、AC是的切線,
∴,
設(shè),
在中,,
∴,
解得,
∴,
故AC的長(zhǎng)為6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為2,點(diǎn)E是BC的中點(diǎn),AE與BD交于點(diǎn)P,F是CD上的一點(diǎn),連接AF分別交BD,DE于點(diǎn)M,N,且AF⊥DE,連接PN,則下列結(jié)論中:
①;②;③tan∠EAF=;④正確的是()
A. ①②③B. ①②④C. ①③④D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是邊長(zhǎng)為4的等邊三角形,點(diǎn)D是AB上異于A,B的一動(dòng)點(diǎn),將△ACD繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°得△BCE,則旋轉(zhuǎn)過(guò)程中△BDE周長(zhǎng)的最小值_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲,乙兩人同時(shí)各接受了300個(gè)零件的加工任務(wù),甲比乙每小時(shí)加工的數(shù)量多,兩人同時(shí)開(kāi)工,其中一人因機(jī)器故障停止加工若干小時(shí)后又繼續(xù)按原速加工,直到他們完成任務(wù)。如圖表示甲比乙多加工的零件數(shù)量y(個(gè))與加工時(shí)間x(小時(shí))之間的函數(shù)關(guān)系,觀察圖象解決下列問(wèn)題:
(1)其中一人因故障,停止加工_________小時(shí),C點(diǎn)表示的實(shí)際意義是________________.甲每小時(shí)加工的零件數(shù)量為_____________個(gè);
(2)求線段BC對(duì)應(yīng)的函數(shù)關(guān)系式和D點(diǎn)坐標(biāo);
(3)乙在加工的過(guò)程中,多少小時(shí)時(shí)比甲少加工75個(gè)零件?
(4)為了使乙能與甲同時(shí)完成任務(wù),現(xiàn)讓丙幫乙加工,直到完成.丙每小時(shí)能加工80個(gè)零件,并把丙加工的零件數(shù)記在乙的名下,問(wèn)丙應(yīng)在第多少小時(shí)時(shí)開(kāi)始幫助乙?并在圖中用虛線畫(huà)出丙幫助后y與x之間的函數(shù)關(guān)系的圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線交軸于兩點(diǎn),與軸交于點(diǎn),連接
求拋物線的解析式;
若是軸下方拋物線上的一點(diǎn),且,請(qǐng)通過(guò)計(jì)算或推理判斷與的位置關(guān)系:
在軸左側(cè)的拋物線上是否存在與點(diǎn)不重合的點(diǎn),使等于中的某個(gè)銳角? 若存在,請(qǐng)求出的值:若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, BD 是△ABC 的角平分線, AE⊥ BD ,垂足為 F ,若∠ABC=35°,∠ C=50°,則∠CDE 的度數(shù)為( )
A.35°B.40°C.45°D.50°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,BC=9, CA=12,∠ABC的平分線BD交AC與點(diǎn)D, DE⊥DB交AB于點(diǎn)E.
(1)設(shè)⊙O是△BDE的外接圓,求證:AC是⊙O的切線;
(2)設(shè)⊙O交BC于點(diǎn)F,連結(jié)EF,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某“興趣小組”根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y=x+的圖象和性質(zhì)進(jìn)行了探究,探究過(guò)程如下,請(qǐng)補(bǔ)充完整
(1)函數(shù)y=x+的自變量取值范圍是 .
(2)下表是x與y的幾組對(duì)應(yīng)值
則表中m的值為 .
(3)根據(jù)表中數(shù)據(jù),在如圖所示平面直角坐標(biāo)xOy中描點(diǎn),并畫(huà)出函數(shù)的一部分,請(qǐng)畫(huà)出該函數(shù)的圖象的另一部分,
(4)觀察函數(shù)圖象:寫(xiě)出該函數(shù)的一條性質(zhì): .
(5)進(jìn)一步探究發(fā)現(xiàn):函數(shù)y=x+圖象與直線y=﹣2只有一交點(diǎn),所以方程x+=﹣2只有1個(gè)實(shí)數(shù)根,若方程x+=k(x<0)有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在正方形中,分別是上的點(diǎn),且,則有結(jié)論成立;
如圖2,在四邊形中,分別是上的點(diǎn),且是的一半, 那么結(jié)論是否仍然成立?若成立,請(qǐng)證明;不成立,請(qǐng)說(shuō)明理由.
若將中的條件改為:如圖3,在四邊形中,,延長(zhǎng)到點(diǎn),延長(zhǎng)到點(diǎn),使得仍然是的一半,則結(jié)論是否仍然成立?若成立,請(qǐng)證明;不成立,請(qǐng)寫(xiě)出它們的數(shù)量關(guān)系并證明
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com