【題目】如圖,在Rt△ABC中,∠ACB=90°,∠BAC=30°,E為AB邊的中點(diǎn),以BE為邊作等邊△BDE,連接AD,CD.
(1)求證:△ADE≌△CDB;
(2)若BC=1,在AC邊上找一點(diǎn)H,使得BH+EH最小,并求出這個(gè)最小值.
【答案】(1)見(jiàn)解析;(2)
【解析】
(1)根據(jù)等邊三角形的性質(zhì),三邊相等,各角為60°,與直角三角形的性質(zhì),和斜邊上的中線等于斜邊的一半的定理,可得AE=DE=DB=BC,∠DBC=∠AED=120°,即可證明.
(2)根據(jù)軸對(duì)稱的性質(zhì)和兩點(diǎn)之間線段最短的公理,做出B點(diǎn)關(guān)于AC的對(duì)稱點(diǎn)B′, 連接B′E,通過(guò)計(jì)算求出即可.
如圖:
(1)在Rt△ABC中,∠ACB=90°,∠BAC=30°,
∴BC=AB.∠ABC=60°.
∵E為AB邊的中點(diǎn),
∴AE=BE,
∵△BDE是等邊三角形,
∴BE=BD=DE,∠DBE=∠DEB=60°,
∴AE=DE=DB=BC,∠DBC=∠AED=120°,
∴△ADE≌△CDB(SAS).
(2)作點(diǎn)B關(guān)于AC的對(duì)稱點(diǎn)B′,連接B′E交AC于點(diǎn)H,
此時(shí)BH=B′H,B′E=B′H+HE=BH+HE最。
∵BC=1,BB′=2,∴B′H=.
答:這個(gè)最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊△ABC中,DE分別是邊AB、AC上的點(diǎn),且AD=CE,則∠ADC+∠BEA=( 。
A.180°B.170°C.160°D.150°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,在平面直角坐標(biāo)系中,△ABC是直角三角形,∠ACB=90°,點(diǎn)A、C的坐標(biāo)分別為A(﹣3,0),C(1,0),tan∠BAC=.
(1)求點(diǎn)B的坐標(biāo);
(2)在x軸上找一點(diǎn)D,連接BD使得△ABD與△ABC相似(不包括全等),并求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,點(diǎn)P是BC延長(zhǎng)線上一點(diǎn),連結(jié)PD并延長(zhǎng)交BA延長(zhǎng)線于點(diǎn)E.記△ABP的面積為S1,△ECP的面積為S2,則S1與S2的大小關(guān)系是( 。
A. S1=S2 B. S1>S2 C. S1<S2 D. 都可能
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE與AC交于點(diǎn)M,EF與AC交于點(diǎn)N,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AB以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)B勻速運(yùn)動(dòng),伴隨點(diǎn)P的運(yùn)動(dòng),矩形PEFG在射線AB上滑動(dòng);動(dòng)點(diǎn)K從點(diǎn)P出發(fā)沿折線PE﹣﹣EF以每秒1個(gè)單位長(zhǎng)的速度勻速運(yùn)動(dòng).點(diǎn)P、K同時(shí)開(kāi)始運(yùn)動(dòng),當(dāng)點(diǎn)K到達(dá)點(diǎn)F時(shí)停止運(yùn)動(dòng),點(diǎn)P也隨之停止.設(shè)點(diǎn)P、K運(yùn)動(dòng)的時(shí)間是t秒(t>0).
(1)當(dāng)t=1時(shí),KE=_____,EN=_____;
(2)當(dāng)t為何值時(shí),△APM的面積與△MNE的面積相等?
(3)當(dāng)點(diǎn)K到達(dá)點(diǎn)N時(shí),求出t的值;
(4)當(dāng)t為何值時(shí),△PKB是直角三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC在網(wǎng)格中的位置如圖所示(每個(gè)小正方形邊長(zhǎng)為1),AD⊥BC于D,下列選項(xiàng)中,錯(cuò)誤的是( )
A. sinα=cosα B. tanC=2 C. sinβ= D. tanα=1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB = 30°,點(diǎn)P是∠AOB內(nèi)任意一點(diǎn),且OP = 7,點(diǎn)E和點(diǎn)F分別是射線OA和射線OB上的動(dòng)點(diǎn),則△PEF周長(zhǎng)的最小值是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的鋼架中,∠A=18°,焊上等長(zhǎng)的鋼條P1P2,P2P3,P3P4,P4P5…來(lái)加固鋼架.∠P5P4B的度數(shù)是( 。
A.80°B.85°C.90°D.100°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD內(nèi)接于⊙O,E為弧CD上任意一點(diǎn),連接DE,AE.
(1)求∠AED的度數(shù);
(2)如圖②,過(guò)點(diǎn)B作BF∥DE交⊙O于點(diǎn)F,連接AF,AF=1,AE=4,求DE的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com