【題目】已知О是直線AB上的一點,,OE平分.
(1)在圖(a)中,若,求的度數(shù);
(2)在圖(a)中,若,直接寫出的度數(shù)(用含的代數(shù)式表示)
(3)將圖(a)中的繞頂點O順時針旋轉(zhuǎn)至圖(b)的位置.
①探究和的度數(shù)之間的關(guān)系,直接寫出結(jié)論;
②在的內(nèi)部有一條射線OF,滿足:,試確定與的度數(shù)之間的關(guān)系,并說明理由.
【答案】(1)15°;(2);(3)①;②,理由詳見解析.
【解析】
(1)由已知可求出∠BOC=180°-∠AOC=150°,再由∠COD是直角,OE平分∠BOC求出∠DOE的度數(shù);
(2)由(1)中的證明方法可得出結(jié)論∠DOE=∠AOC,從而用含的代數(shù)式表示出∠DOE的度數(shù);
(3)①由∠COD是直角,OE平分∠BOC可得出∠COE=∠BOE=90°-∠DOE,則得∠AOC=180°-∠BOC=180°-2∠COE=180°-2(90°-∠DOE),從而得出∠AOC和∠DOE的度數(shù)之間的關(guān)系;
②設(shè),,根據(jù)①中結(jié)論以及已知,得出,從而得出結(jié)論.
(1)∵,,
∴.
∵OE平分,
∴.
∵,
∴
(2).
∵,,
∴.
∵OE平分,
∴
∵,
∴.
(3)①.
∵OE平分,
∴.
∵,∴.
∵,
∴.
∴.
即.
②.
理由:設(shè),,
由①可知,.
∴.
∵,
∴.
∴.
∵,
∴.
∴.
即.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某港口P位于東西方向的海岸線上,“遠(yuǎn)航”號、“海天”號輪船同時離開港口,各自沿一固定方向航行,“遠(yuǎn)航”號每小時航行16海里,“海天”號每小時航行12海里.它們離開港口一個半小時后,分別位于點Q、R處,且相距30海里,如果知道“遠(yuǎn)航”號沿北偏東方向航行,請求出“海天”號的航行方向?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把 6個相同的小正方體擺成如圖的幾何體.
(1)畫出該幾何體的主視圖、左視圖、俯視圖;
(2)如果每個小正方體棱長為,則該幾何體的表面積是 .
(3)如果在這個幾何體上再添加一些相同的小正方體,并并保持左視圖和俯視圖不變,那么最多可以再 添加 個小正方體.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O中,點A為中點,BD為直徑,過A作AP∥BC交DB的延長線于點P.
(Ⅰ)求證:PA是⊙O的切線;
(Ⅱ)若BC=2,AB=2,求sin∠ABD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】通過畫圖,尋找對頂角和鄰補角(不含平角):
(1)若2條直線相交于一點,則有_____________對對頂角,_____________對鄰補角.
(2)若3條直線相交于同一點,則有_____________對對頂角,_____________對鄰補角.
(3)若4條直線相交于同一點,則有______________對對頂角,__________________對鄰補角.
(4)通過(1)~(3)小題中直線條數(shù)與對頂角的對數(shù)之間的關(guān)系,若有n條直線相交于同一點,則可形成___________對對頂角,___________對鄰補角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】六一前夕,某幼兒園園長到廠家選購A、B兩種品牌的兒童服裝,每套A品牌服裝進(jìn)價比B品牌服裝每套進(jìn)價多25元,用2000元購進(jìn)A種服裝數(shù)量是用750元購進(jìn)B種服裝數(shù)量的2倍.
求A、B兩種品牌服裝每套進(jìn)價分別為多少元?
該服裝A品牌每套售價為130元,B品牌每套售價為95元,服裝店老板決定,購進(jìn)B品牌服裝的數(shù)量比購進(jìn)A品牌服裝的數(shù)量的2倍還多4套,兩種服裝全部售出后,可使總的獲利超過1200元,則最少購進(jìn)A品牌的服裝多少套?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線的圖象經(jīng)過點,交x軸于點A、點在B點左側(cè),頂點為D.
求拋物線的解析式及點A、B的坐標(biāo);
將沿直線BC對折,點A的對稱點為,試求的坐標(biāo);
拋物線的對稱軸上是否存在點P,使?若存在,求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中,有一道“群羊逐草”的問題,大意是:牧童甲在草原上放羊,乙牽著一只羊來,并問甲:“你的羊群有100只嗎?”甲答:“如果在這群羊里加上同樣的一群,再加上半群,四分之一群,再加上你的一只,就是100只.”問牧童甲趕著多少只羊?若設(shè)這群羊有x只,則下列方程中,正確的是( 。
A. (1++)x=100+1 B. x+x+x+x=100﹣1 C. (1++)x=100﹣1 D. x+x+x+x=100+1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD和BE是高,∠ABE=45°,點F是AB的中點,AD與FE、BE分別交于點G、H,∠CBE=∠BAD.有下列結(jié)論:①FD=FE;②AH=2CD;③BCAD=AE2;④S△ABC=4S△ADF.其中正確的有( )
A.1個 B.2 個 C.3 個 D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com