【題目】如圖1,在中,,,點(diǎn)為邊上的動(dòng)點(diǎn)(點(diǎn)不與點(diǎn),重合).以為頂點(diǎn)作,射線交邊于點(diǎn),過點(diǎn)作交射線于點(diǎn),連接.
(1)求證:;
(2)當(dāng)時(shí)(如圖2),求的長;
(3)點(diǎn)在邊上運(yùn)動(dòng)的過程中,是否存在某個(gè)位置,使得?若存在,求出此時(shí)的長;若不存在,請說明理由.
【答案】(1)詳見解析;(2);(3)點(diǎn)D在BC邊上運(yùn)動(dòng)的過程中,存在某個(gè)位置,使得DF=CF,此時(shí)BD=9.
【解析】
(1)利用等腰三角形的性質(zhì)有∠B=∠ACB,然后根據(jù)∠ADE+∠CDE=∠B+∠BAD,∠ADE=∠B即可得出∠BAD=∠CDE,則結(jié)論可證;
(2)過點(diǎn)A作AM⊥BC于M,設(shè),在中利用勾股定理求出k的值,然后利用等腰三角形三線合一求出BC的長度,然后證明△ABD∽△CBA,
則,由此可求出DB的長度,最后再利用平行線分線段成比例有,即可求出AE的長度;
(3)作FH⊥BC于H,AM⊥BC于M,AN⊥FH于N,首先證明四邊形AMHN為矩形,
則有∠MAN=90°,MH=AN,然后設(shè),在中利用勾股定理求出k的值,然后利用等腰三角形三線合一求出BC的長度,然后證明△AFN∽△ADM,
利用相似三角形的性質(zhì)可求出AN的長度,進(jìn)而求出CH的長度,再根據(jù)等腰三角形三線合一求出CD的長度,最后利用BD=BC-CD即可得出答案.
(1)證明:∵AB=AC,
∴∠B=∠ACB,
∵∠ADE+∠CDE=∠B+∠BAD,∠ADE=∠B,
∴∠BAD=∠CDE,
∴△BAD∽△DCE.
(2)解:過點(diǎn)A作AM⊥BC于M.
∵,
∴設(shè) ,
∴
解得或(舍去)
∵AB=AC,AM⊥BC,
∴BC=2BM=2×4k=16,
∵DE∥AB,
∴∠BAD=∠ADE,
∵∠ADE=∠B,∠B=∠ACB,
∴∠BAD=∠ACB,
∵∠ABD=∠CBA,
∴△ABD∽△CBA,
∴,
∴,
∵DE∥AB,
∴,
∴.
(3)點(diǎn)D在BC邊上運(yùn)動(dòng)的過程中,存在某個(gè)位置,使得DF=CF.
理由:作FH⊥BC于H,AM⊥BC于M,AN⊥FH于N.
∵FH⊥BC,AM⊥BC,AN⊥FH,
∴∠NHM=∠AMH=∠ANH=90°,
∴四邊形AMHN為矩形,
∴∠MAN=90°,MH=AN,
∵AN⊥FH,AM⊥BC,
∴∠ANF=90°=∠AMD,
∵∠DAF=90°=∠MAN,
∴∠NAF=∠MAD,
∴△AFN∽△ADM,
∴,
∴,
∴CH=CM-MH=CM-AN=8-=,
當(dāng)DF=CF時(shí),由點(diǎn)D不與點(diǎn)C重合,可知△DFC為等腰三角形,
∵FH⊥DC,
∴CD=2CH=7,
∴BD=BC-CD=16-7=9,
∴點(diǎn)D在BC邊上運(yùn)動(dòng)的過程中,存在某個(gè)位置,使得DF=CF,此時(shí)BD=9.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的邊長為,點(diǎn)在邊上,連接,過點(diǎn)作,與的延長線相交于點(diǎn),連接,與邊相交于點(diǎn),與對(duì)角線相交于點(diǎn).若,則的長為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,點(diǎn)M、N分別在線段AC、AB上,將△ANM沿直線MN折疊,使點(diǎn)A的對(duì)應(yīng)點(diǎn)D恰好落在線段BC上,當(dāng)△DCM為直角三角形時(shí),折痕MN的長為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD中,AB=5,BC=4,將矩形折疊,使得點(diǎn)B落在線段CD的點(diǎn)F處,則線段BE的長為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,將二次函數(shù)y=x2+2x+1的圖象沿x軸翻折,然后向右平移1個(gè)單位,再向上平移5個(gè)單位,得到二次函數(shù)y=ax2+bx+c的圖象.函數(shù)y=x2+2x+1的圖象的頂點(diǎn)為點(diǎn)A.函數(shù)y=ax2+bx+c的圖象的頂點(diǎn)為點(diǎn)C,兩函數(shù)圖象分別交于B、D兩點(diǎn).
(1)求函數(shù)y=ax2+bx+c的解析式;
(2)如圖2,連接AD、CD、BC、AB,判斷四邊形ABCD的形狀,并說明理由.
(3)如圖3,連接BD,點(diǎn)M是y軸上的動(dòng)點(diǎn),在平面內(nèi)是否存在一點(diǎn)N,使以B、D、M、N為頂點(diǎn)的四邊形為矩形?若存在,請求出N點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)是平行四邊形的邊的中點(diǎn),是對(duì)角線,交的延長線于,連接交于點(diǎn).
(1)如圖1,求證:;
(2)如圖2,當(dāng)四邊形是矩形時(shí),請你確定四邊形的形狀并說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在以“青春心向覺,建功新時(shí)代”為主題的校園文化藝術(shù)節(jié)期間,舉辦了合唱,群舞,書法,演講共四個(gè)項(xiàng)目的比賽,要求每位學(xué)生必須參加且僅參加一項(xiàng),小紅隨機(jī)調(diào)查了部分學(xué)生的報(bào)名情況,并繪制了下列兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)統(tǒng)計(jì)圖中信息解答下列問題:
(1)本次調(diào)查的學(xué)生總?cè)藬?shù)是多少?扇形統(tǒng)計(jì)圖中“”部分的圓心角度數(shù)是多少?
(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若全校共有1800名學(xué)生,請估計(jì)該校報(bào)名參加書法和演講比賽的學(xué)生共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),直線交軸負(fù)半軸)軸正半軸于兩點(diǎn), 的面積為4.5;
如圖1.求的值;
如圖2.在軸負(fù)半軸上取點(diǎn).點(diǎn)在第一象限,連接,過點(diǎn)作交的延長線于點(diǎn),若,求的值;
如圖3,在的條件下.交軸于點(diǎn)軸交的延長線于點(diǎn),設(shè)與軸交于點(diǎn),連接,當(dāng)時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明對(duì)九(1)、九(2)班(人數(shù)都為50人)參加“陽光體育”的情況進(jìn)行了調(diào)查,統(tǒng)計(jì)結(jié)果如圖所示.下列說法中正確的是( )
A.喜歡乒乓球的人數(shù)(1)班比(2)班多B.喜歡足球的人數(shù)(1)班比(2)班多
C.喜歡羽毛球的人數(shù)(1)班比(2)班多D.喜歡籃球的人數(shù)(2)班比(1)班多
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com