【題目】如圖,正方形ABCD中,點(diǎn)E是AD邊的中點(diǎn),BD、CE交于點(diǎn)H,BE、AH交于點(diǎn)G,則下列結(jié)論:①AG⊥BE;②BE:BC=:2;③S△BHE=S△CHD;④∠AHB=∠EHD.其中正確的個(gè)數(shù)是
A.1B.2C.3D.4
【答案】D
【解析】
首先根據(jù)正方形的性質(zhì)證得△BAE≌△CDE,推出∠ABE=∠DCE,再證 △ADH≌△CDH,求得∠HAD=∠HCD,推出∠ABE=∠HAD:求出∠ABE+∠BAG=90°;最后在△AGE中根據(jù)三角形的內(nèi)角和是180°求得∠AGE=90°即可得到①正確;
因?yàn)辄c(diǎn)E是AD邊的中點(diǎn),求出AB= 2AE,BE= AE
即可求得BE:BC=:2,故②正確;
根據(jù) AD ∥BC,求出S△BDE=S△CDE,推出 S△BDE﹣S△DEH=S△CDE﹣S△DEH,
即;S△BHE=S△CHD,故③正確;
由∠AHD=∠CHD,得到鄰補(bǔ)角和對(duì)頂角相等得到∠AHB=∠EHD,故④正確
∵四邊形ABCD是正方形,E是AD邊上的中點(diǎn),
∴AE=DE,AB=CD,∠BAD=∠CDA=90°,
在△BAE和△CDE中
∵
∴△BAE≌△CDE(SAS),
∴∠ABE=∠DCE,
∵四邊形ABCD是正方形,
∴AD=DC,∠ADB=∠CDB=45°,
∵在△ADH和△CDH中,
∴△ADH≌△CDH(SAS),
∴∠HAD=∠HCD,
∵∠ABE=∠DCE
∴∠ABE=∠HAD,
∵∠BAD=∠BAH+∠DAH=90°,
∴∠ABE+∠BAH=90°,
∴∠AGB=180°-90°=90°,
∴AG⊥BE,故①正確;
∵點(diǎn)E是AD邊的中點(diǎn),
∴AB= 2AE,
∴BE= AE
∴BE:BC=:2,故②正確;
∵AD∥BC,∴S△BDE=S△CDE,
∴S△BDE﹣S△DEH=S△CDE﹣S△DEH,
即;S△BHE=S△CHD,故③正確;
∵△ADH≌△CDH,
∴∠AHD=∠CHD,
∴∠AHB=∠CHB,
∵∠BHC=∠DHE,
∴∠AHB=∠EHD,故④正確;
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左邊),與軸交于點(diǎn),連接.
求、、三點(diǎn)的坐標(biāo)及拋物線的對(duì)稱軸;
若已知軸上一點(diǎn),則在拋物線的對(duì)稱軸上是否存在一點(diǎn),使得是直角三角形?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在20km越野賽中,甲乙兩選手的行程y(單位:km)隨時(shí)間 x(單位:h)變化的圖象如圖所示,
根據(jù)圖中提供的信息,有下列說法:①兩人相遇前,甲的速度小于乙的速度;②出發(fā)后1小時(shí),兩人行程均為10km;③出發(fā)后1.5小時(shí),甲的行程比乙多3km;④甲比乙先到達(dá)終點(diǎn).其中正確的有____個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場用5500元購進(jìn)甲、乙兩種礦泉水共180箱,礦泉水的成本價(jià)與銷售價(jià)如下表所示:
類別 | 成本價(jià)(元箱) | 銷售價(jià)(元箱) |
甲 | 25 | 35 |
乙 | 35 | 48 |
求:(1)購進(jìn)甲、乙兩種礦泉水各多少箱?
(2)該商場售完這180箱礦泉水,可獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,點(diǎn)為邊上一動(dòng)點(diǎn),于點(diǎn),于點(diǎn),連結(jié),點(diǎn)為的中點(diǎn),則的最小值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】浦東新區(qū)在創(chuàng)建文明城區(qū)的活動(dòng)中,有兩段長度相等的彩色道磚路面的鋪設(shè)任務(wù),分別交給甲、乙兩個(gè)施工隊(duì)同時(shí)進(jìn)行施工.如圖是反映所鋪設(shè)的彩色道磚路面的長度(米)與施工時(shí)間(時(shí))之間關(guān)系的部分圖像.請(qǐng)根據(jù)題意回答下列問題:
(1)甲隊(duì)每小時(shí)施工_________米;
(2)乙隊(duì)在時(shí)段內(nèi),與之間的函數(shù)關(guān)系式是_________;
(3)在時(shí)段內(nèi),甲隊(duì)比乙隊(duì)每小時(shí)快_________米;
(4)如果甲隊(duì)施工速度不變,乙隊(duì)在小時(shí)后,施工速度增加到米/時(shí),結(jié)果兩隊(duì)同時(shí)完成了任務(wù).則甲隊(duì)從開始施工到完工所鋪設(shè)的彩色道磚路面的長度為_________米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,,,點(diǎn)在上,點(diǎn)在上,點(diǎn)、在對(duì)角線上,若四邊形是菱形,則________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣(x﹣1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側(cè))兩點(diǎn),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D,已知A(﹣1,0).
(1)求點(diǎn)B,C的坐標(biāo);
(2)判斷△CDB的形狀并說明理由;
(3)將△COB沿x軸向右平移t個(gè)單位長度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com