【題目】已知:如圖,二次函數(shù)y=a(x﹣h)2+的圖象經(jīng)過原點(diǎn)O(0,0),A(2,0).

(1)寫出該函數(shù)圖象的對(duì)稱軸;

(2)若將線段OA繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°到OA′,試判斷點(diǎn)A′是否為該函數(shù)圖象的頂點(diǎn)?請(qǐng)說明理由.

【答案】(1)直線x=1 (2)點(diǎn)A′為拋物線y=﹣(x﹣1)2+的頂點(diǎn)

【解析】

試題分析:(1)把已知點(diǎn)O、A代入函數(shù)的解析式可求出h的值h=1,及a=,然后根據(jù)二次函數(shù)的頂點(diǎn)式的特點(diǎn)判斷出對(duì)稱軸;

(2)線段OA繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°到OA′,可知OA′=OA=2,A′OA=60°,如圖,作A′Bx軸于點(diǎn)B,根據(jù)直角三角形的特點(diǎn)可知sin60°=,cos60°=,因此可求得A′B=OA′sin60°==OB=OA′cos60°==1,所以A點(diǎn)的坐標(biāo)為(1,),點(diǎn)A正好是二次函數(shù)y=﹣(x﹣1)2+的頂點(diǎn).

試題解析:解:(1)二次函數(shù)y=a(x﹣h)2+的圖象經(jīng)過原點(diǎn)O(0,0),A(2,0).

拋物線的對(duì)稱軸為直線x=1;

點(diǎn)A′是該函數(shù)圖象的頂點(diǎn).理由如下:

如圖,作A′Bx軸于點(diǎn)B

線段OA繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°到OA′,

OA′=OA=2,A′OA=60°,

在RtA′OB中,

A′B=OA′sin60°==

OB=OA′cos60°==1.

A′點(diǎn)的坐標(biāo)為(1,),

點(diǎn)A′為拋物線y=﹣(x﹣1)2+的頂點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若∠C=α,EAC+FBC=β

1)如圖①,AM是∠EAC的平分線,BN是∠FBC的平分線,若AMBN,則αβ有何關(guān)系?并說明理由.

2)如圖②,若∠EAC的平分線所在直線與∠FBC平分線所在直線交于P,試探究∠APBα、β的關(guān)系是______.(用α、β表示)

3)如圖③,若α≥βEAC與∠FBC的平分線相交于P1,EAP1與∠FBP1的平分線交于P2 ;依此類推,則∠P5=______.(用α、β表示)

  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=kx(k≠0)經(jīng)過點(diǎn)(12,﹣5),將直線向上平移m(m>0)個(gè)單位,若平移后得到的直線與半徑為6⊙O相交(點(diǎn)O為坐標(biāo)原點(diǎn)),則m的取值范圍為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線Ly=x+2x軸、y軸分別交于A、B兩點(diǎn),在y軸上有一點(diǎn)N04),動(dòng)點(diǎn)MA點(diǎn)以每秒1個(gè)單位的速度勻速沿x軸向左移動(dòng).

1)點(diǎn)A的坐標(biāo):_____;點(diǎn)B的坐標(biāo):_____

2)求NOM的面積SM的移動(dòng)時(shí)間t之間的函數(shù)關(guān)系式;

3)在y軸右邊,當(dāng)t為何值時(shí),NOMAOB,求出此時(shí)點(diǎn)M的坐標(biāo);

4)在(3)的條件下,若點(diǎn)G是線段ON上一點(diǎn),連結(jié)MG,MGN沿MG折疊,點(diǎn)N恰好落在x軸上的點(diǎn)H處,求點(diǎn)G的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB=60°,點(diǎn)P是∠AOB內(nèi)的定點(diǎn)且OP=,若點(diǎn)M、N分別是射線OA、OB上異于點(diǎn)O的動(dòng)點(diǎn),則PMN周長的最小值是(  )

A. B. C. 6 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按要求作圖:已知A(﹣2,1),B(﹣1,2),C(﹣3,4).

1)畫出與三角形ABC關(guān)于y軸對(duì)稱的三角形A1B1C1

2)將三角形A1B1C1先向右平移2個(gè)單位,再向下平移1個(gè)單位,得到三角形A2B2C2,則三角形A2B2C2頂點(diǎn)坐標(biāo)分別為:A2   B2   C2   ;

3)若點(diǎn)Pa-1b+2)與點(diǎn)A關(guān)于x軸對(duì)稱,則a=   ,b=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖有一座拋物線形拱橋,橋下面在正常水位是AB20m,水位上升3m就達(dá)到警戒線CD,這是水面寬度為10m。

1)在如圖的坐標(biāo)系中求拋物線的解析式。

(2)若洪水到來時(shí),水位以每小時(shí)0.2m的速度上升,從警戒線開始,再持續(xù)多少小時(shí)才能到拱橋頂?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】桌面上放有張卡片,正面分別標(biāo)有數(shù)字,,,.這些卡片除數(shù)字外完全相同,把這些卡片反面朝上洗勻后放在桌面上,甲從中任意抽出一張,記下卡片上的數(shù)字后仍反面朝上放回洗勻,乙也從中任意抽出一張,記下卡片上的數(shù)字,然后將這兩數(shù)相加.

請(qǐng)用列表或畫樹狀圖的方法求兩數(shù)之和為的概率;

若甲與乙按上述方式做游戲,當(dāng)兩數(shù)之和為時(shí),甲勝;當(dāng)兩數(shù)之和不為時(shí),則乙勝.若甲勝一次得分,誰先達(dá)到分為勝.那么乙勝一次得多少分,這個(gè)游戲?qū)﹄p方公平?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某小區(qū)要用籬笆圍成一矩形花壇,花壇的一邊用足夠長的墻,另外三邊所用的籬笆之和恰好為米.

1求矩形的面積(用表示,單位平方米)與邊(用表示,單位米)之間的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);怎樣圍,可使花壇面積最大?

2如何圍,可使此矩形花壇面積是平方米?

查看答案和解析>>

同步練習(xí)冊(cè)答案