精英家教網 > 初中數學 > 題目詳情

【題目】如圖1,∠ACB=90°,AC=BC,BECE,ADCED,

1)求證: BCE≌△CAD

2)猜想:AD,DEBE的數量關系為 不需證明);

3)當CE繞點C旋轉到圖2位置時,猜想線段AD,DEBE之間又有怎樣的數量關系,并證明你的結論.

【答案】1)證明見解析;(2DE= AD-BE;(3DE= BE-AD

【解析】

1)根據題意利用同角的余角相等得到,然后利用AAS定理進行證明;(2)根據BCE≌△CAD,得出對應邊相等,再利用線段之間的轉化,進而可得出結論;(3)還是先求解BCE≌△CAD,利用線段之間的轉化得出結論.

1)解:∵∠ACB=90°BECE,ADCE

BCE和△CAD

BCE≌△CADAAS

2)證明:由(1)可知:BCE≌△CAD

AD=CE,BE=CD,

DE=CE-CD=AD-BE

故答案為:DE= AD-BE

3)∵∠ACB=90°BECE,ADCE

BCE和△CAD

BCE≌△CADAAS

AD=CE,BE=CD,

DE=CD-CE=BE-AD

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】1)閱讀理解:

我們知道,只用直尺和圓規(guī)不能解決的三個經典的希臘問題之一是三等分任意角,但是這個任務可以借助如圖1所示的一邊上有刻度的勾尺完成,勾尺的直角頂點為P,

寬臂的寬度=PQQRRS,(這個條件很重要哦!)勾尺的一邊MN滿足M,NQ三點共線(所以PQMN).

下面以三等分∠ABC為例說明利用勾尺三等分銳角的過程:

第一步:畫直線DE使DEBC,且這兩條平行線的距離等于PQ

第二步:移動勾尺到合適位置,使其頂點P落在DE上,使勾尺的MN邊經過點B,同時讓點R落在∠ABCBA邊上;

第三步:標記此時點Q和點P所在位置,作射線BQ和射線BP

請完成第三步操作,圖中∠ABC的三等分線是射線   、   

2)在(1)的條件下補全三等分∠ABC的主要證明過程:

   ,BQPR

BPBR.(線段垂直平分線上的點與這條線段兩個端點的距離相等)

∴∠   =∠   

PQMN,PTBCPTPQ,

∴∠   =∠   

(角的內部到角的兩邊距離相等的點在角的平分線上)

∴∠   =∠   =∠   

3)在(1)的條件下探究:是否成立?如果成立,請說明理由;如果不成立,請在圖2中∠ABC的外部畫出(無需寫畫法,保留畫圖痕跡即可).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,E為直線AB上的動點(不與A,B重合),作射線DE并繞點D逆時針旋轉45°,交直線BC邊于點F,連結EF.

探究:當點E在邊AB上,求證:EF=AE+CF.

應用:(1)當點E在邊AB上,且AD=2時,則△BEF的周長是______

(2)當點E不在邊AB上時,EF,AE,CF三者的數量關系是______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC 中,AB=AC,點D,E在邊BC上,且BD=CE.

(1)求證: △ABD≌△ACE;

(2)∠B=40°,AB=BE,求∠DAE的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖:在ABC中,BECF分別是AC、AB兩邊上的高,在BE上截取BD=AC,在CF的延長線上截取CG=AB,連接AD、AG

1)求證:AD=AG

2ADAG的位置關系如何,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】校園安全受到全社會的廣泛關注,東營市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請你根據統(tǒng)計圖中所提供的信息解答下列問題:

1接受問卷調查的學生共有_______人,扇形統(tǒng)計圖中基本了解部分所對應扇形的圓心角為_______°

2請補全條形統(tǒng)計圖;

3若該中學共有學生900人,請根據上述調查結果,估計該中學學生中對校園安全知識達到了解基本了解程度的總人數;

4若從對校園安全知識達到了解程度的3個女生和2個男生中隨機抽取2人參加校園安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,∠B=90°ABDF,AB=3cm,BD=8cm,點C是線段BD上一動點,點E是直線DF上一動點,且始終保持ACCE

1)試說明:∠ACB =CED

2)當CBD的中點時, ABCEDC全等嗎?若全等,請說明理由;若不全等,請改變BD的長(直接寫出答案),使它們全等。

3)若AC=CE ,試求DE的長

4)在線段BD的延長線上,是否存在點C,使得AC=CE,若存在,請求出DE的長及AEC的面積;若不存在,請說明理由。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,四邊形OABC是等腰梯形,BCOA,OA=7,AB=4,∠ COA=60°,點Px軸上的—個動點,點P不與點O、點A重合.連結CP,過點PPDAB于點D

(1)求點B的坐標;

(2)當點P運動什么位置時,OCP為等腰三角形,求這時點P的坐標;

(3)當點P運動什么位置時,使得∠CPD=OAB,且=,求這時點P的坐標。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在如圖的直角坐標系中,畫出函數的圖象,并結合圖象回答下列問題:

1y的值隨x值的增大而______(填增大減小);

2)圖象與x軸的交點坐標是_____;圖象與y軸的交點坐標是______

3)當x 時,y 0 ;

查看答案和解析>>

同步練習冊答案