(2010•攀枝花)如圖所示,已知AB是⊙O的直徑,直線L與⊙O相切于點(diǎn)C,,CD交AB于E,BF⊥直線L,垂足為F,BF交⊙O于C.
(1)圖中哪條線段與AE相等?試證明你的結(jié)論;
(2)若,AE=4,求AB的值.

【答案】分析:(1)觀察圖象知:只有FG的長(zhǎng)度與AE相當(dāng),可猜想AE=FG,然后著手證明它們相等;求簡(jiǎn)單的線段相等,通常是證線段所在的三角形全等,那么本題需要構(gòu)造全等三角形,連接AC、CG,然后證△AEC≌△GCF;連接BD,由于弧AC=弧AD,那么BA⊥CD,根據(jù)垂徑定理知∠D=∠BCE;由弦切角定理知∠FCB=∠D=∠DCB,那么它們的余角也相等,即∠FBC=∠EBC,那么弧CG=弧AC,即AC=CG,再由角平分線的性質(zhì)得CF=CE,根據(jù)HL即可判定所求的兩個(gè)三角形全等,由此得證.
(2)由弦切角定理知∠FCG=∠FBC,它們的正弦值也相等,即可在Rt△FCG中,求得CG的長(zhǎng),也就得到了AC的長(zhǎng),在Rt△ACB中,CE⊥AB,由射影定理即可得到AB的長(zhǎng).
解答:解:(1)FG=AE,理由如下:
連接CG、AC、BD;
,
∴BA⊥CD,
,即∠D=∠BCD;
∵直線L切⊙O于C,
∴∠BCF=∠D=∠BCD,
∴∠FBC=∠ABC,
,CE=CF;
∴AC=CG;
△ACE和△GCF中,AC=CG、CE=CF,∠AEC=∠CFG=90°,
∴Rt△AEC≌Rt△GCF,則AE=FG.

(2)∵FC切⊙O于C,
∴∠FCG=∠FBC,即sin∠FCG=sin∠CBF=
在Rt△FCG中,F(xiàn)G=AE=4,CG=FG÷sin∠FCG=4;
∴AC=CG=4;
在Rt△ABC中,CE⊥AB,由射影定理得:
AC2=AE•AB,即AB=AC2÷AE=20.
點(diǎn)評(píng):此題主要涉及到:圓周角定理、垂徑定理、全等三角形的判定和性質(zhì)、弦切角定理、解直角三角形等知識(shí)點(diǎn);通過構(gòu)造全等三角形來求得AE=FG是解決此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(11)(解析版) 題型:解答題

(2010•攀枝花)如圖所示,已知直線y=x與拋物線y=ax2+b(a≠0)交于A(-4,-2),B(6,3)兩點(diǎn).拋物線與y軸的交點(diǎn)為C.
(1)求這個(gè)拋物線的解析式;
(2)在拋物線上存在點(diǎn)M,是△MAB是以AB為底邊的等腰三角形,求點(diǎn)M的坐標(biāo);
(3)在拋物線上是否存在點(diǎn)P使得△PAC的面積是△ABC面積的?若存在,試求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2010•攀枝花)如圖所示,已知直線y=x與拋物線y=ax2+b(a≠0)交于A(-4,-2),B(6,3)兩點(diǎn).拋物線與y軸的交點(diǎn)為C.
(1)求這個(gè)拋物線的解析式;
(2)在拋物線上存在點(diǎn)M,是△MAB是以AB為底邊的等腰三角形,求點(diǎn)M的坐標(biāo);
(3)在拋物線上是否存在點(diǎn)P使得△PAC的面積是△ABC面積的?若存在,試求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年四川省攀枝花市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•攀枝花)如圖所示,已知直線y=x與拋物線y=ax2+b(a≠0)交于A(-4,-2),B(6,3)兩點(diǎn).拋物線與y軸的交點(diǎn)為C.
(1)求這個(gè)拋物線的解析式;
(2)在拋物線上存在點(diǎn)M,是△MAB是以AB為底邊的等腰三角形,求點(diǎn)M的坐標(biāo);
(3)在拋物線上是否存在點(diǎn)P使得△PAC的面積是△ABC面積的?若存在,試求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年全國(guó)中考數(shù)學(xué)試題匯編《反比例函數(shù)》(01)(解析版) 題型:選擇題

(2010•攀枝花)如圖:等腰直角三角形ABC位于第一象限,AB=AC=2,直角頂點(diǎn)A在直線y=x上,其中A點(diǎn)的橫坐標(biāo)為1,且兩條直角邊AB、AC分別平行于x軸、y軸,若雙曲線y=(k≠0)與△ABC有交點(diǎn),則k的取值范圍是( )

A.1<k<2
B.1≤k≤3
C.1≤k≤4
D.1≤k<4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(04)(解析版) 題型:選擇題

(2010•攀枝花)如圖所示.△ABC內(nèi)接于⊙O,若∠OAB=28°,則∠C的大小是( )

A.56°
B.62°
C.28°
D.32°

查看答案和解析>>

同步練習(xí)冊(cè)答案