【題目】如圖1,已知拋物線y=﹣x2+mx+m﹣2的頂點(diǎn)為A,且經(jīng)過點(diǎn)B(3,﹣3).
(1)求頂點(diǎn)A的坐標(biāo)
(2)若P是拋物線上且位于直線OB上方的一個(gè)動(dòng)點(diǎn),求△OPB的面積的最大值及比時(shí)點(diǎn)P的坐標(biāo);
(3)如圖2,將原拋物線沿射線OA方向進(jìn)行平移得到新的拋物線,新拋物線與射線OA交于C,D兩點(diǎn),請(qǐng)問:在拋物線平移的過程中,線段CD的長度是否為定值?若是,請(qǐng)求出這個(gè)定值;若不是,請(qǐng)說明理由.
【答案】(1)(﹣1,1);(2)P(,);(3).
【解析】
(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式,根據(jù)配方法,可得頂點(diǎn)坐標(biāo);
(2)過點(diǎn)P作y軸的平行線交OB與點(diǎn)Q,求出直線BP的解析式,表示出點(diǎn)Q的坐標(biāo),根據(jù)三角形的面積公式列出函數(shù)關(guān)系式,利用二次函數(shù)的最值可得P點(diǎn)坐標(biāo);
(3)根據(jù)平移規(guī)律,可得新拋物線,根據(jù)聯(lián)立拋物線與OA的解析式,可得C、D點(diǎn)的橫坐標(biāo),根據(jù)勾股定理,可得答案.
解:(1)把B(3,﹣3)代入y=﹣x2+mx+m2得:﹣3=﹣32+3m+m2,
解得m=2,
∴y=﹣x2+2x=﹣(x+1)2+1,
∴頂點(diǎn)A的坐標(biāo)是(﹣1,1);
(2)過點(diǎn)P作y軸的平行線交OB與點(diǎn)Q.
∵直線OB的解析式為y=﹣x,
故設(shè)P(n,﹣n2+2n),Q(n,﹣n),
∴PQ=﹣n2+2n﹣(﹣n)=﹣n2+3n,
∴S△OPB=(﹣n2+3n)=﹣(n﹣)+,
當(dāng)n=時(shí),S△OPB的最大值為.
此時(shí)y=﹣n2+2n=,
∴P(,);
(3)∵直線OA的解析式為y=x,
∴可設(shè)新的拋物線解析式為y=﹣(x﹣a)2+a,
聯(lián)立,
∴﹣(x﹣a)2+a=x,
∴x1=a,x2=a﹣1,
即C、D兩點(diǎn)間的橫坐標(biāo)的差為1,
∴CD=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】,兩種機(jī)器人都被用來搬運(yùn)化工原料,型機(jī)器人每小時(shí)搬運(yùn)的化工原料是型機(jī)器人每小時(shí)搬運(yùn)的化工原料的1.5倍,型機(jī)器人搬運(yùn)900所用時(shí)間比型機(jī)器人搬運(yùn)800所用時(shí)間少1小時(shí).
(1)求兩種機(jī)器人每小時(shí)分別搬運(yùn)多少化工原料?
(2)某化工廠有8000化工原料需要搬運(yùn),要求搬運(yùn)所有化工原料的時(shí)間不超過5小時(shí),現(xiàn)計(jì)劃先由6個(gè)型機(jī)器人搬運(yùn)3小時(shí),再增加若干個(gè)型機(jī)器人一起搬運(yùn),請(qǐng)問至少要增加多少個(gè)型機(jī)器人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一般地,我們把半徑為1的圓叫做單位圓,在平面直角坐標(biāo)系xOy中,設(shè)單位圓的圓心與坐標(biāo)原點(diǎn)O重合,則單位圓與x軸的交點(diǎn)分別為(1,0),(﹣1,0),與y軸的交點(diǎn)分別為(0,1),(0,﹣1).在平面直角坐標(biāo)系xOy中,設(shè)銳角α的頂點(diǎn)與坐標(biāo)原點(diǎn)O重合,α的一邊與x軸的正半軸重合,另一邊與單位圓交于點(diǎn)P(x1,y1),且點(diǎn)P在第一象限.
(1)求x1(用含α的式子表示);y1(用含α的式子表示);
(2)將射線OP繞坐標(biāo)原點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)90°后與單位圓交于點(diǎn)Q(x2,y2).
①判斷y1與x2的數(shù)量關(guān)系,并證明;
②寫出y1+y2的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某人承包了一池塘養(yǎng)魚,他想估計(jì)一下收入情況.于是讓他上初三的兒子幫忙.他兒子先讓他從魚塘里隨意打撈上了60條魚,把每條魚都作上標(biāo)記,放回魚塘;過了2天,他讓他父親從魚塘內(nèi)打撈上了50條魚,結(jié)果里面有2條帶標(biāo)記的.假設(shè)當(dāng)時(shí)這種魚的市面價(jià)為2.8元/斤,平均每條魚估計(jì)2.3斤,你能幫助他估計(jì)一下今年的收入情況嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的盒子里,裝有四個(gè)分別標(biāo)有數(shù)字1,2,3,4的小球,它們的形狀、大小、質(zhì)地等完全相同,小明先從盒子里隨機(jī)取出一個(gè)小球,記下數(shù)字為x,放回盒子搖勻后,再由小華隨機(jī)取出一個(gè)小球,記下數(shù)字為y.
(1)用列表法或畫樹形圖表示出(x,y)的所有可能出現(xiàn)的結(jié)果;
(2)求小明、小華各取一次小球所確定的點(diǎn)(x,y)落在二次函數(shù)y=x2的圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,△ABC的頂點(diǎn)坐標(biāo)如圖所示,
(1)請(qǐng)你在圖中先作出△ABC關(guān)于直線m(直線m上點(diǎn)的橫坐標(biāo)均為﹣1)對(duì)稱圖形△A1B1C1,再作出△A1B1C1關(guān)于直線n(直線n上點(diǎn)的縱坐標(biāo)均為2)對(duì)稱圖形△A2B2C2;
(2)線段BC上有一點(diǎn)M(a,b),點(diǎn)M關(guān)于直線m的對(duì)稱點(diǎn)為N,點(diǎn)N關(guān)于直線的n的對(duì)稱點(diǎn)為E,求N、E的坐標(biāo)(用含a,b的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D在邊AC上,將△ABD沿BD(對(duì)稱軸)翻折,點(diǎn)A落在點(diǎn)E處,連接AE,CE.
(1)如圖1,當(dāng)∠AEC=90°時(shí),求證:CD=AD;
(2)當(dāng)點(diǎn)E落在BC邊所在直線上,且∠AEC=60°時(shí).
①猜想△BAE是什么三角形并證明;
②試求線段CD、AD之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AB=AC,點(diǎn)D為BC上一點(diǎn),且DA=DB,此時(shí)△ACD也恰好為等腰三角形,則∠BAC=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,彈性小球從點(diǎn)P(0,3)出發(fā),沿所示方向運(yùn)動(dòng),每當(dāng)小球碰到矩形OABC的邊時(shí)反彈,反彈時(shí)反射角等于入射角,當(dāng)小球第1次碰到矩形的邊時(shí)的點(diǎn)為P1,第2次碰到矩形的邊時(shí)的點(diǎn)為P2,…,第n次碰到矩形的邊時(shí)的點(diǎn)為Pn,點(diǎn)P2019的坐標(biāo)是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com