【題目】如圖,矩形ABCD中,∠ABD、∠CDB的平分線BE、DF分別交邊AD、BC于點E、F.
(1)求證:△AEB≌△CFD;
(2)當∠ABE= 度時,四邊形BEDF是菱形.
【答案】(1)詳見解析;(2)30°
【解析】
(1)根據(jù)矩形的性質(zhì)得出AB=CD,∠A=∠C=90°,再根據(jù)角平分線的性質(zhì)即可得出答案;
(2)先利用矩形的性質(zhì)結(jié)合(1)得出的全等證明BEDF是平行四邊形,再證明BE=DE即可得出答案.
證明:(1)∵四邊形ABCD是矩形,
∴AB∥DC,
∴∠ABD=∠CDB,
∵BE平分∠ABD、DF平分∠BDC,
∴∠EBD=∠ABD,∠FDB=∠BDC,
∴∠EBA=∠FDC,
又∵AD∥BC,∠A =∠C,AB=DC ,
∴△AEB≌△CFD;
(2)由(1)可得AE=CF
又∵ABCD是矩形
∴AD=BC,AD∥BC
∴AD-AE=BC-CF,即ED=BF
∴EDFB是平行四邊形
當∠ABE=30°時,∠ABD=2∠ABE=60°
∴∠EBD=∠ABD-∠ABE=30°
∴∠EDB=90°-∠ABD=30°
∴∠EBD=∠EDB
∴BE=ED
∴平行四邊形BEDF是菱形
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知拋物線過點.
(1)求拋物線的解析式及其頂點C的坐標;
(2)設(shè)點D是x軸上一點,當時,求點D的坐標;
(3)如圖2.拋物線與y軸交于點E,點P是該拋物線上位于第二象限的點,線段PA交BE于點M,交y軸于點N,和的面積分別為,求的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著近幾年城市建設(shè)的快速發(fā)展.某市對花木的需求量逐年提高,某園林專業(yè)戶計劃投資15萬元種植花卉和樹木.根據(jù)市場調(diào)查與預測,種植樹木的利潤y1(萬元)與投資量x(萬元)成正比例關(guān)系,如圖①所示;種植花卉的利潤y2(萬元)與投資量x(萬元)的函數(shù)關(guān)系如圖②所示(其中OA是拋物線的一部分,A為拋物線的頂點;AB//x軸)。
(1)求出y1和y2關(guān)于投資量x的函數(shù)關(guān)系式
(2)求此專業(yè)戶種植花卉和樹木獲取的總利潤W(萬元)關(guān)于投入種植花卉的資金t(萬元)之間的函數(shù)關(guān)系式:
(3)此專業(yè)戶投入種植花卉的資金為多少萬元時,才能使獲取的利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,,矩形的邊、分別在、上,,,矩形沿射線方向,以每秒1個單位長度的速度運動.同時點從點出發(fā)沿折線以每秒1個單位長度的速度向終點運動,當點到達點時,矩形也停止運動,設(shè)點的運動時間為,的面積為.
(1)分別寫出點到、的距離(用含的代數(shù)式表示);
(2)當點不與矩形的頂點重合時,求與之間的函數(shù)關(guān)系式;
(3)設(shè)點到的距離為,當時,求的值;
(4)若在點出發(fā)的同時,點從點以每秒個單位長度的速度向終點A運動,當點停止運動時,點與矩形也停止運動,設(shè)點關(guān)于的對稱點為,當的一邊與的一邊平行時,直接寫出線段的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商城經(jīng)銷甲、乙兩種商品,甲種商品每件進價12元,售價20元;乙種商品每件進價28元,
售價40元.商城用2288元購進了甲、乙兩種商品共100件.
(1)求購進甲、乙兩種商品各多少件?
(2)若商城對商品的售價進行調(diào)整,甲種商品在原售價的基礎(chǔ)上上調(diào)(a大于0)出售,乙種商品在原售價基礎(chǔ)上下調(diào)1.5出售.為保障商城在銷售這100件商品所獲得的利潤不低于728無,求a的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,梯形ABCD中,AD∥BC,AE⊥BC于點E,∠ADC的平分線交AE于點O,以點O為圓心,OA為半徑的圓經(jīng)過點B,交BC于另一點F.
(1)求證:CD與⊙O相切;
(2)若BF=24,OE=5,求tan∠ABC的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】體育鍛煉對學生的健康成長有著深遠的影響.某中學 開展了四項球類活動:A:乒乓球;B:足球;C:排球;D:籃球.王老師對學生最喜歡的一項球類活動進行了抽樣調(diào)查(每人只限一項),并將調(diào)查結(jié)果繪制成圖 1,圖2兩幅不完整的統(tǒng)計圖.
請根據(jù)圖中信息解答下列問題:
(1)參加此次調(diào)查的學生總數(shù)是 人;將圖1、圖2的統(tǒng)計圖補充完整;
(2)已知在被調(diào)查的最喜歡排球項目的4名學生中只有1名女生,現(xiàn)從這4名學生中任意抽取2名學生參加校排球隊,請用列表法或畫樹狀圖的方法,求出恰好抽到一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠生產(chǎn)部門為了解本部門工人的生產(chǎn)能力情況,進行了抽樣調(diào)查.該部門隨機抽取了30名工人某天每人加工零件的個數(shù),數(shù)據(jù)如下:
20 | 21 | 19 | 16 | 27 | 18 | 31 | 29 | 21 | 22 |
25 | 20 | 19 | 22 | 35 | 33 | 19 | 17 | 18 | 29 |
18 | 35 | 22 | 15 | 18 | 18 | 31 | 31 | 19 | 22 |
整理上面數(shù)據(jù),得到條形統(tǒng)計圖:
樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)如下表所示:
統(tǒng)計量 | 平均數(shù) | 眾數(shù) | 中位數(shù) |
數(shù)值 | 23 | m | 21 |
根據(jù)以上信息,解答下列問題:
(1)上表中眾數(shù)m的值為 ;
(2)為調(diào)動工人的積極性,該部門根據(jù)工人每天加工零件的個數(shù)制定了獎勵標準,凡達到或超過這個標準的工人將獲得獎勵.如果想讓一半左右的工人能獲獎,應(yīng)根據(jù) 來確定獎勵標準比較合適.(填“平均數(shù)”、“眾數(shù)”或“中位數(shù)”)
(3)該部門規(guī)定:每天加工零件的個數(shù)達到或超過25個的工人為生產(chǎn)能手.若該部門有300名工人,試估計該部門生產(chǎn)能手的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,直線與軸負半軸交于點,與軸正半軸交于點,線段的長是方程的一個根,請解答下列問題:
(1)求點的坐標;
(2)雙曲線與直線交于點,且,求的值;
(3)在(2)的條件下,點在線段上,,直線軸,垂足為,點在直線上,在直線上的坐標平面內(nèi)是否存在點,使以點、、、為頂點的四邊形是矩形?若存在,請求出點的坐標;若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com