【題目】在“母親節(jié)”期間,某校部分團(tuán)員參加社會(huì)公益活動(dòng),準(zhǔn)備購(gòu)進(jìn)一批許愿瓶進(jìn)行銷(xiāo)售,并將所得利潤(rùn)捐給慈善機(jī)構(gòu).根據(jù)市場(chǎng)調(diào)査.這種許愿瓶一段時(shí)間內(nèi)的銷(xiāo)售量y(個(gè))與銷(xiāo)售單價(jià)x(元/個(gè))之間的對(duì)應(yīng)關(guān)系如圖所示:

1)試求出yx之間的函數(shù)關(guān)系;

2)若許原瓶的進(jìn)價(jià)為6/個(gè),按照上述市場(chǎng)調(diào)查的銷(xiāo)售規(guī)律,求銷(xiāo)售利潤(rùn)w(元)與銷(xiāo)售單價(jià)x(元/個(gè))之間的函數(shù)關(guān)系式.

【答案】1y=30x+600;(2w=30x2+780x3600

【解析】

1)觀察圖象知yx的一次函數(shù),設(shè)y=kx+b,根據(jù)待定系數(shù)法求出一次函數(shù)的表達(dá)式,最后檢驗(yàn)圖中其他兩點(diǎn)是否在所求的一次函數(shù)的圖象上;

2)根據(jù)w=(銷(xiāo)售單價(jià)-進(jìn)價(jià))×銷(xiāo)售量進(jìn)行求解.

解:(1)從圖象看,yx的一次函數(shù),設(shè)y=kx+b,

圖象過(guò)點(diǎn)(10,300),(12,240),則,

解得:

y=30x+600,

當(dāng)x=14時(shí),y=180;當(dāng)x=16時(shí),y=120,

即點(diǎn)(14,180),(16,120)均在函數(shù)y=30x+600圖象上,

yx之間的函數(shù)關(guān)系式為y=30x+600;

2)由題意得:w=(x6)(﹣30x+600)=30x2+780x3600

wx之間的函數(shù)關(guān)系式為w=30x2+780x3600

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著我國(guó)經(jīng)濟(jì)社會(huì)的發(fā)展,人民對(duì)于美好生活的追求越來(lái)越高.某社區(qū)為了了解家庭對(duì)于文化教育的消費(fèi)悄況,隨機(jī)抽取部分家庭,對(duì)每戶(hù)家庭的文化教育年消費(fèi)金額進(jìn)行問(wèn)卷調(diào)査,根據(jù)調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖表.

請(qǐng)你根據(jù)統(tǒng)計(jì)圖表提供的信息,解答下列問(wèn)題:

組別

家庭年文化教育消費(fèi)金額x(元)

戶(hù)數(shù)

A

x≤5000

36

B

5000<x≤10000

m

C

10000<x≤15000

27

D

15000<x≤20000

15

E

x>20000

30

(1)本次被調(diào)査的家庭有__________戶(hù),表中 m=__________;

(2)本次調(diào)查數(shù)據(jù)的中位數(shù)出現(xiàn)在__________組.扇形統(tǒng)計(jì)圖中,D組所在扇形的圓心角是__________度;

(3)這個(gè)社區(qū)有2500戶(hù)家庭,請(qǐng)你估計(jì)家庭年文化教育消費(fèi)10000元以上的家庭有多少戶(hù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c(b,c是常數(shù))經(jīng)過(guò)A(0,2)、B(4,0)兩點(diǎn).

(1)求該拋物線的解析式和頂點(diǎn)坐標(biāo);

(2)作垂直x軸的直線x=t,在第一象限交直線ABM,交這條拋物線于N,求當(dāng)t取何值時(shí),MN有最大值?最大值是多少?

(3)在(1)的情況下,以A、M、N、D為頂點(diǎn)作平行四邊形,請(qǐng)直接寫(xiě)出第四個(gè)頂點(diǎn)D的所有坐標(biāo)(直接寫(xiě)出結(jié)果,不必寫(xiě)解答過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】荊州市濱江公園旁的萬(wàn)壽寶塔始建于明嘉靖年間,周邊風(fēng)景秀麗.現(xiàn)在塔底低于地面約7米,某校學(xué)生測(cè)得古塔的整體高度約為40米.其測(cè)量塔頂相對(duì)地面高度的過(guò)程如下:先在地面A處測(cè)得塔頂?shù)难鼋菫?/span>30°,再向古塔方向行進(jìn)a米后到達(dá)B處,在B處測(cè)得塔頂?shù)难鼋菫?/span>45°(如圖所示),那么a的值約為_____米(≈1.73,結(jié)果精確到0.1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)的圖象交軸于兩點(diǎn),交軸于點(diǎn),點(diǎn)的坐標(biāo)為,頂點(diǎn)的坐標(biāo)為

(1)求二次函數(shù)的解析式和直線的解析式;

(2)點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)軸的垂線,交拋物線于點(diǎn),當(dāng)點(diǎn)在第一象限時(shí),求線段長(zhǎng)度的最大值;

(3)在拋物線上是否存在異于的點(diǎn),使邊上的高為,若存在求出點(diǎn)的坐標(biāo);若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先化簡(jiǎn),再求值:,其中x是不等式組的整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知四邊形DOBC是矩形,且D04),B60).若反比例函數(shù)y=x0)的圖象經(jīng)過(guò)線段OC的中點(diǎn)A,交DC于點(diǎn)E,交BC于點(diǎn)F.設(shè)直線EF的解析式為y=k2x+b

1)求反比例函數(shù)和直線EF的解析式;

2)求OEF的面積;

3)請(qǐng)結(jié)合圖象直接寫(xiě)出不等式k2x+b0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)yx3的圖象與反比例函數(shù)y(k為常數(shù),且k0)的圖象交于A1,a),B兩點(diǎn).

1)求反比例函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);

2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,用細(xì)線懸掛一個(gè)小球,小球在豎直平面內(nèi)的AC兩點(diǎn)間來(lái)回?cái)[動(dòng),A點(diǎn)與地面距離AN=14cm,小球在最低點(diǎn)B時(shí),與地面距離BM=5cm,AOB=66°,求細(xì)線OB的長(zhǎng)度.(參考數(shù)據(jù):sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)

【答案】15cm

【解析】

試題設(shè)細(xì)線OB的長(zhǎng)度為xcm,作ADOBD,證出四邊形ANMD是矩形,得出AN=DM=14cm,求出OD=x-9,在RtAOD中,由三角函數(shù)得出方程,解方程即可.

試題解析:設(shè)細(xì)線OB的長(zhǎng)度為xcm,作ADOBD,如圖所示:

∴∠ADM=90°,

∵∠ANM=DMN=90°,

∴四邊形ANMD是矩形,

AN=DM=14cm,

DB=14﹣5=9cm,

OD=x﹣9,

RtAOD中,cosAOD=,

cos66°==0.40,

解得:x=15,

OB=15cm.

型】解答
結(jié)束】
20

【題目】已知:如圖,在半徑為中,是兩條直徑,的中點(diǎn),的延長(zhǎng)線交于點(diǎn),且,連接。.

1)求證:;

2)求的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案