精英家教網 > 初中數學 > 題目詳情

【題目】如圖 ,菱形中,,動點從點出發(fā),沿折線運動到點停止,動點從點出發(fā),沿線段運動到點停止,它們運動的速度相同.設點出發(fā)時,的面積為 .已知之間的函數關系.如圖 所示,其中為線段,曲線為拋物線的一部分,請根據圖中的信息,解答下列問題:

(1)當時,的面積 (填不變);

(2)分別求出線段,曲線所對應的函數表達式;

(3)當為何值時,的面積是?

【答案】(1)不變;(2)y=10x;y=10(x-3)2;(3)當x=或3-時,BPQ的面積是5cm2

【解析】

試題分析:(1)根據函數圖象即可得到結論;

(2)設線段OM的函數表達式為y=kx,把(1,10)即可得到線段OM的函數表達式為y=10x;設曲線NK所對應的函數表達式y(tǒng)=a(x-3)2,把(2,10)代入得根據得到曲線NK所對應的函數表達式y(tǒng)=10(x-3)2;

(3)把y=5代入y=10x或y=10(x-3)2即可得到結論.

試題解析(1)由函數圖象知,當1<x<2時,BPQ的面積始終等于10,

當1<x<2時,BPQ的面積不變;

(2)設線段OM的函數表達式為y=kx,

把(1,10)代入得,k=10,

線段OM的函數表達式為y=10x;

設曲線NK所對應的函數表達式y(tǒng)=a(x-3)2,

把(2,10)代入得,10=a(2-3)2

a=10,

曲線NK所對應的函數表達式y(tǒng)=10(x-3)2;

(3)把y=5代入y=10x得,x=,

把y=5代入y=10(x-3)2得,5=10(x-3)2

x=3±,

3+>3,

x=3-,

當x=或3-時,BPQ的面積是5cm2

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】因式分解
(1)a3﹣4a
(2)4m(a+b)﹣2n(a+b)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】新型冠狀病毒的直徑大約為000000008 m —000000012 m000000012用科學記數法表示為(

A.12×107B.12×106C.12×107D.012×108

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】七邊形的內角和是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知點P(2a+b,b)與P1(8,﹣2)關于y軸對稱,則a+b=_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形ABCD中,∠ABD、CDB的平分線BE、DF分別交邊AD、BC于點E、F.

(1)求證:四邊形BEDF是平行四邊形;

(2)當∠ABE為多少度時,四邊形BEDF是菱形?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商店在2014年至2016年期間銷售一種禮盒.2014年,該商店用3500元購進了這種禮盒并且全部售完;2016年,這種禮盒的進價比2014年下降了11元/盒,該商店用2400元購進了與2014年相同數量的禮盒也全部售完,禮盒的售價均為60元/盒.

(1)2014年這種禮盒的進價是多少元/盒?

(2)若該商店每年銷售這種禮盒所獲利潤的年增長率相同,問年增長率是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,∠ABC=∠ACB,點D在BC所在的直線上,點E在射線AC上,且AD=AE,連接DE.
(1)如圖①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度數;
(2)如圖②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度數;
(3)當點D在直線BC上(不與點B、C重合)運動時,試探究∠BAD與∠CDE的數量關系,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖 , 在菱形ABCD中,∠ABC與∠BAD的度數比為1∶2,周長是32cm . 求:

(1)兩條對角線的長度;
(2)菱形的面積.

查看答案和解析>>

同步練習冊答案