【題目】在正方形ABCD中,DE為正方形的外角∠ADF的角平分線,點(diǎn)G在線段AD上,過點(diǎn)G作PG⊥DE于點(diǎn)P,連接CP,過點(diǎn)D作DQ⊥PC于點(diǎn)Q,交射線PG于點(diǎn)H.
(1)如圖1,若點(diǎn)G與點(diǎn)A重合.
①依題意補(bǔ)全圖1;
②判斷DH與PC的數(shù)量關(guān)系并加以證明;
(2)如圖2,若點(diǎn)H恰好在線段AB上,正方形ABCD的邊長(zhǎng)為1,請(qǐng)寫出求DP長(zhǎng)的思路(可以不寫出計(jì)算結(jié)果).
【答案】(1)①補(bǔ)圖見解析;②DH=PC,證明見解析;(2)解法見解析.
【解析】
試題分析:(1)①依題意補(bǔ)全圖形即可;
②由正方形的性質(zhì)和角平分線得出∠EDF=∠ADE=45°,證出∠HAD=∠PDC,∠ADQ=∠DCQ,由ASA證明△HAD≌△PDC,得出對(duì)應(yīng)邊相等即可;
(2)思路如下:a、與②同理可證∠HGD=∠PDC,∠ADQ=∠DCP,可證△HGD∽△PDC;b、由②可知△GPD為等腰直角三角形,可設(shè)DP=PG=x,則GD=x,AG=1﹣x,易證△AGH為等腰直角三角形,則GH=﹣2x;c、由△HGD∽△PDC得出比例式,解方程即可求得DP的長(zhǎng).
試題解析:(1)①依題意補(bǔ)全圖1,如圖1所示:
②DH=PC,理由如下:
∵DE為正方形的外角∠ADF的角平分線,
∴∠EDF=∠ADE=45°,
∵PG⊥DE于點(diǎn)P,
∴∠DAP=45°,
∴∠HAD=135°,∠PDC=135°,
∴∠HAD=∠PDC,
∵四邊形ABCD為正方形,
∴AD=CD,
∵DQ⊥PC,
∴∠CDQ+∠DCQ=90°,
∵∠ADQ+∠CDQ=90°,
∴∠ADQ=∠DCQ,
在△HAD和△PDC中,
,
∴△HAD≌△PDC(ASA),
∴DH=CP;
(2)求DP長(zhǎng)的思路如下:如圖2所示:
a、與②同理得:∠HGD=∠PDC,∠ADQ=∠DCP,
∴△HGD∽△PDC;
b、由②可知△GPD為等腰直角三角形,
∴∠AGH=∠PGD=45°,
∴△AGH為等腰直角三角形,
設(shè)DP=PG=x,則GD=x,AG=1﹣x,GH=﹣2x;
c、由△HGD∽△PDC得:,
即,
解得:x=(負(fù)值舍去),
∴DP=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對(duì)稱軸為x=1的拋物線經(jīng)過A(﹣1,0),B(4,5)兩點(diǎn).
(1)求拋物線的解析式;
(2)P為直線AB上的動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線交拋物線于點(diǎn)Q.
①當(dāng)PQ=6時(shí),求點(diǎn)P的坐標(biāo);
②是否存在點(diǎn)P,使以A、P、Q為頂點(diǎn)的三角形為等腰三角形?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)和一次函數(shù)y=2x﹣1,其中一次函數(shù)的圖象經(jīng)過(a,b),(a+1,b+k)兩點(diǎn).
(1)求反比例函數(shù)的解析式;
(2)如圖,已知點(diǎn)A在第一象限,且同時(shí)在上述兩個(gè)函數(shù)的圖象上,求點(diǎn)A的坐標(biāo);
(3)利用(2)的結(jié)果,請(qǐng)問:在x軸上是否存在點(diǎn)P,使△AOP為等腰三角形?若存在,把符合條件的P點(diǎn)坐標(biāo)都求出來;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個(gè)正比例函數(shù)的圖象經(jīng)過不同象限的兩點(diǎn)A(2,m),B(n,3),那么一定有( )
A.m>0,n>0 B.m>0,n<0
C.m<0,n>0 D.m<0,n<0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式:32-12=8×1;52-32=8×2;72-52=8×3;…,請(qǐng)用含正整數(shù)n的等式表示你所發(fā)現(xiàn)的規(guī)律:___________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,若DF⊥AC,∠ADF:∠FDC=3:2,則∠BDF= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中記載了這樣一道題:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長(zhǎng)一尺,問徑幾何?”用現(xiàn)代的語(yǔ)言表述為:“如果AB為⊙O的直徑,弦CD⊥AB于E,AE=1寸,CD=10寸,那么直徑AB的長(zhǎng)為多少寸?”請(qǐng)你補(bǔ)全示意圖,并求出AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一元二次方程5x2﹣11x+4=0的根的情況是( )
A.有兩個(gè)相等的實(shí)數(shù)根
B.有兩個(gè)不相等的實(shí)數(shù)根
C.只有一個(gè)實(shí)數(shù)根
D.沒有實(shí)數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一塊正方形鐵皮的四個(gè)角各剪去一個(gè)邊長(zhǎng)為4cm的小正方形,做成一個(gè)無蓋的盒子,盒子的容積是400cm3,求原鐵皮的邊長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com