【題目】如圖所示,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=﹣的圖象交于A、B兩點,且點A的橫坐標(biāo)和點B的縱坐標(biāo)都是﹣2,
(1)求一次函數(shù)的解析式;
(2)求△AOB的面積.
(3)直接寫出kx+b+>0的解集.
【答案】(1)y=﹣x+2;(2)6;(3)由函數(shù)圖象可得當(dāng)x<﹣2或0<x<4時,kx+b+>0.
【解析】試題分析:(1)先求出A,B兩點坐標(biāo),將其代入一次函數(shù)關(guān)系式即可;
(2)根據(jù)一次函數(shù)與y軸的交點為(0,2),則△AOC和△BOC的底邊長為2,兩三角形的高分別為|x1|和|x2|,從而可求得其面積;
(3)由函數(shù)圖象得出直線在雙曲線上方時x的取值范圍.
試題解析:(1)設(shè)A(x1,y1),B(x2,y2),則x1=﹣2,y2=﹣2,
把x1=y2=﹣2分別代入y=﹣得y1=x2=4,
∴A(﹣2,4),B(4,﹣2).
把A(﹣2,4)和B(4,﹣2)分別代入y=kx+b,
得,
解得,
∴一次函數(shù)的解析式為y=﹣x+2;
(2)如圖,
∵y=﹣x+2與y軸交點為C(0,2),
∴OC=2,
∴S△AOB=S△AOC+S△BOC=×OC×|x1|+×OC×|x2|=×2×2+×2×4=6;
(3)由函數(shù)圖象可得當(dāng)x<﹣2或0<x<4時,kx+b+>0.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD, AC∥BD, CE平分∠ACD,交BD于點E,點F在CD的延長線上,且∠BEF=∠CEF,若∠DEF=∠EDF,則∠A的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B兩地相距30千米,某日下午12點30分甲騎自行車從A地出發(fā)駛往B地,乙也于同日下午騎摩托車從A地出發(fā)駛往B地,圖中折線PQR和線段MN分別表示甲和乙所行駛的路程S(千米)與該日下午時間t(時)的關(guān)系,試根據(jù)圖中的信息解答以下問題:
(1)甲出發(fā)幾小時后,乙才出發(fā)?
(2)乙行駛多少小時后追上甲,這時兩人距離B地還有多少千米?
(3)甲從下午12:30到14;30的平均速度是多少千米/時?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生體育活動的情況,學(xué)校設(shè)計了“你最喜歡的體育活動是哪一項(僅限一項)”的調(diào)查問卷.該校對學(xué)生進(jìn)行隨機抽樣調(diào)查,以下是根據(jù)調(diào)查數(shù)據(jù)得到的不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中信息解答以下問題:
(1)該校對多少名學(xué)生進(jìn)行了抽樣調(diào)查?
(2)①請補全圖1并標(biāo)上數(shù)據(jù),
、趫D2中x=__________% ;
(3)若該校共有學(xué)生900人,請你估計該校最喜歡跳繩項目的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明家買了一輛小轎車,小明連續(xù)記錄了某一周每天行駛的路程:
星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 | |
路程(千米) |
請你用學(xué)過的知識解決下面的問題:
(1)請你估計小明家的轎車每月(按天計算)要行駛多少千米?
(2)已知每行駛千米需汽油升,汽油每升元,試用含、的代數(shù)式表示小明家每月的汽油費,此代數(shù)式為_______;
(3)設(shè),,請你求出小明家一年(按個月計算)的汽油費用大約是多少元(精確到千元).(注:第(1)、(3)小題須寫出必要步驟)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A點坐標(biāo)為(﹣4,﹣3),將線段OA繞原點O順時針旋轉(zhuǎn)90°得到OA′,則點A′的坐標(biāo)是( 。
A. (﹣4,3) B. (﹣3,4) C. (3,﹣4) D. (4,﹣3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,AB//ED, BF平分∠ABC, DF平分∠EDC.
(1)若∠ABC =130°,∠EDC=110°,求∠C的度數(shù)和∠BFD的度數(shù);
(2)請直接寫出∠BFD與∠C的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,點O在AC上,以OA為半徑的⊙O交AB于點D,BD的垂直平分線交BC于點E,交BD于點F,連接DE.
(1)判斷直線DE與⊙O的位置關(guān)系,并說明理由;
(2)若AC=6,BC=8,OA=2,求線段DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點A、D在直線l的同側(cè).
(1)如圖1,在直線l上找一點C.使得線段AC+DC最。ㄕ埻ㄟ^畫圖指出點C的位置);
(2)如圖2,在直線l上取兩點B、E,恰好能使△ABC和△DCE均為等邊三角形.M、N分別是線段AC、BC上的動點,連結(jié)DN交AC于點G,連結(jié)EM交CD于點F.
①當(dāng)點M、N分別是AC、BC的中點時,判斷線段EM與DN的數(shù)量關(guān)系,并說明理由;
②如圖3,若點M、N分別從點A和B開始沿AC和BC以相同的速度向點C勻速運動,當(dāng)M、N與點C重合時運動停止,判斷在運動過程中線段GF與直線1的位置關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com