【題目】全民健身運動已成為一種時尚,為了了解我市居民健身運動的情況,某健身館的工作人員開展了一項問卷調(diào)查,問卷包括五個項目:A:健身房運動;B:跳廣場舞;C:參加暴走團;D:散布;E:不運動.
以下是根據(jù)調(diào)查結果繪制的統(tǒng)計圖表的一部分.
運動形式 | A | B | C | D | E |
人數(shù) | 12 | 30 | m | 54 | 9 |
請你根據(jù)以上信息,回答下列問題:
(1)接受問卷調(diào)查的共有 人,圖表中的m= ,n= ;
(2)統(tǒng)計圖中,A類所對應的扇形圓心角的度數(shù)為 ;
(3)根據(jù)調(diào)查結果,我市市民最喜愛的運動方式是 ,不運動的市民所占的百分比是 ;
(4)鄭州市碧沙崗公園是附近市民喜愛的運動場所之一,每晚都有“暴走團”活動,若最鄰近的某社區(qū)約有1500人,那么估計一下該社區(qū)參加碧沙崗“暴走團”的大約有多少人?
【答案】(1)150,45,36;(2)28.8°;(3)散步,6%;(4)450.
【解析】
(1)由項目的人數(shù)及其百分比求得總人數(shù),根據(jù)各項目人數(shù)之和等于總人數(shù)求得,再用項目人數(shù)除以總人數(shù)可得的值;
(2)乘以項目人數(shù)占總人數(shù)的比例可得;
(3)由表可知樣本中散步人數(shù)最多,據(jù)此可得,再用項目人數(shù)除以總人數(shù)可得;
(4)總人數(shù)乘以樣本中人數(shù)所占比例.
解:(1)接受問卷調(diào)查的共有人,,
,
,
故答案為:150、45、36;
(2)類所對應的扇形圓心角的度數(shù)為,
故答案為:;
(3)根據(jù)調(diào)查結果,我市市民最喜愛的運動方式是散步,不運動的市民所占的百分比是,
故答案為:散步、;
(4)(人,
答:估計該社區(qū)參加碧沙崗“暴走團”的大約有450人.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx(a≠0)與x軸交于原點及點A,且經(jīng)過點B(4,8),對稱軸為直線x=﹣2,頂點為D.
(1)填空:拋物線的解析式為 ,頂點D的坐標為 ,直線AB的解析式為 ;
(2)在直線AB左側拋物線上存在點E,使得∠EBA=∠ABD,求E的坐標;
(3)連接OB,點P為x軸下方拋物線上一動點,過點P作OB的平行線交直線AB于點Q,當S△POQ:S△BOQ=1:2時,求出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某數(shù)學興趣小組在探究函數(shù)y=|x2-4x+3|的圖象和性質(zhì)時,經(jīng)歷以下幾個學習過程:
(1)列表(完成以下表格)
x | … | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | … |
y1=x2-4x+3 | … | 15 | 8 | 0 | 0 | 3 | 15 | … | |||
y=|x2-4x+3| | … | 15 | 8 | 0 | 0 | 3 | 15 | … |
(2)描點并畫出函數(shù)圖象草圖(在備用圖1中描點并畫圖)
(3)根據(jù)圖象完成以下問題
(ⅰ)觀察圖象
函數(shù)y=|x2-4x+3|的圖象可由函數(shù)y1=x2-4x+3的圖象如何變化得到?
答:______.
(ⅱ)數(shù)學小組探究發(fā)現(xiàn)直線y=8與函數(shù)y=|x2-4x+3|的圖象交于點E、F,E(-1,8),F(5,8),則不等式|x2-4x+3|>8的解集是______;
(ⅲ)設函數(shù)y=|x2-4x+3|的圖象與x軸交于A、B兩點(B位于A的右側),與y軸交于點C.
①求直線BC的解析式;
②探究應用:將直線BC沿y軸平移m個單位后與函數(shù)y=|x2-4x+3|的圖象恰好有3個交點,求此時m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=(k是常數(shù)).
(1)若該函數(shù)的圖象與x軸有兩個不同的交點,試求k的取值范圍;
(2)若點(1,k)在某反比例函數(shù)圖象上,要使該反比例函數(shù)和二次函數(shù)y=都是y隨x的增大而增大,求k應滿足的條件及x的取值范圍;
(3)若拋物線y=與x軸交于A(,0)、B(,0)兩點,且<,=34,若與y軸不平行的直線y=ax+b經(jīng)過點P(1,3),且與拋物線交于(,)、(,)兩點,試探究是否為定值,并寫出探究過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】國家創(chuàng)新指數(shù)是反映一個國家科學技術和創(chuàng)新競爭力的綜合指數(shù).對國家創(chuàng)新指數(shù)得分排名前40的國家的有關數(shù)據(jù)進行收集、整理、描述和分析.下面給出了部分信息:
a.國家創(chuàng)新指數(shù)得分的頻數(shù)分布直方圖(數(shù)據(jù)分成7組:
30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);
b.國家創(chuàng)新指數(shù)得分在60≤x<70這一組的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5
c.40個國家的人均國內(nèi)生產(chǎn)總值和國家創(chuàng)新指數(shù)得分情況統(tǒng)計圖:
d.中國的國家創(chuàng)新指數(shù)得分為69.5.
(以上數(shù)據(jù)來源于《國家創(chuàng)新指數(shù)報告(2018)》)
根據(jù)以上信息,回答下列問題:
(1)中國的國家創(chuàng)新指數(shù)得分排名世界第______;
(2)在40個國家的人均國內(nèi)生產(chǎn)總值和國家創(chuàng)新指數(shù)得分情況統(tǒng)計圖中,包括中國在內(nèi)的少數(shù)幾個國家所對應的點位于虛線的上方.請在圖中用“”圈出代表中國的點;
(3)在國家創(chuàng)新指數(shù)得分比中國高的國家中,人均國內(nèi)生產(chǎn)總值的最小值約為______萬美元;(結果保留一位小數(shù))
(4)下列推斷合理的是______.
①相比于點A,B所代表的國家,中國的國家創(chuàng)新指數(shù)得分還有一定差距,中國提出“加快建設創(chuàng)新型國家”的戰(zhàn)略任務,進一步提高國家綜合創(chuàng)新能力;
②相比于點B,C所代表的國家,中國的人均國內(nèi)生產(chǎn)總值還有一定差距,中國提出“決勝全面建成小康社會”的奮斗目標,進一步提高人均國內(nèi)生產(chǎn)總值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+3x+c經(jīng)過A(﹣1,0),B(4,0)兩點,與y軸交于點C.
(1)求拋物線的解析式;
(2)若點P在第一象限的拋物線上,且點P的橫坐標為t,過點P向x軸作垂線交直線BC于點Q,設線段PQ的長為m,求m與t之間的函數(shù)關系式,并求出m的最大值;
(3)在(2)的條件下,拋物線上點D(不與C重合)的縱坐標為m的最大值,在x軸上找一點E,使點B、C、D、E為頂點的四邊形是平行四邊形,請直接寫出E點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知矩形,,,為邊上任意一點,連結,,以為直徑作分別交,于點,,連結,.
(1)若點為的中點,證明:.
(2)若為等腰三角形時,求的長.
(3)作點關于直線的對稱點.
①當點落在線段上時,設線段,交于點,求與的面積之比.
②在點的運動過程中,當點落在四邊形內(nèi)時(不包括邊界),則的范圍是________(直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖1,拋物線與軸交于點、,與軸交于點,且,.
(1)求拋物線解析式;
(2)如圖2,點是拋物線第一象限上一點,連接交軸于點,設點的橫坐標為,線段長為,求與之間的函數(shù)關系式;
(3)在(2)的條件下,過點作直線軸,在上取一點(點在第二象限),連接,使,連接并延長交軸于點,過點作于點,連接、、.若時,求值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC=10,tanA=2,BE⊥AC于點E,D是線段BE上的一個動點,則的最小值是( )
A. B. C. D. 10
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com