【題目】閱讀以下材料,并按要求完成相應(yīng)的任務(wù):

萊昂哈德·歐拉(Leonhard Euler)是瑞士數(shù)學(xué)家,在數(shù)學(xué)上經(jīng)常見到以他的名字命名的重要常數(shù)、公式和定理,下面是歐拉發(fā)現(xiàn)的一個(gè)定理:在ABC 中,R r 分別為外接圓和內(nèi)切圓的半徑,O I 分別為其外心和內(nèi)心,則OI R2Rr .

下面是該定理的證明過程(借助了第(2)問的結(jié)論):

延長(zhǎng)AI 交⊙O 于點(diǎn) D,過點(diǎn) I 作⊙O 的直徑 MN,連接 DM,AN.

∵∠D=N,∴∠DMI=NAI(同弧所對(duì)的圓周角相等),

∴△MDI∽△ANI.,∴ IA ID IM IN

如圖②,在圖 1(隱去 MD,AN)的基礎(chǔ)上作⊙O 的直徑DE,連接BE,BD,BI,IF

DE 是⊙O 的直徑,∴∠DBE=90°.

∵⊙I AB 相切于點(diǎn) F,∴∠AFI=90°,

∴∠DBE=IFA.

∵∠BAD=E(同弧所對(duì)圓周角相等),

∴△AIF∽△EDB

,∴②,

由(2)知:

又∵,

2Rr(R d )(R d )

R d 2Rr

d R 2Rr

任務(wù):(1)觀察發(fā)現(xiàn): IM R d IN (用含R,d 的代數(shù)式表示);

2)請(qǐng)判斷 BD ID 的數(shù)量關(guān)系,并說明理由.(請(qǐng)利用圖 1 證明)

3)應(yīng)用:若ABC 的外接圓的半徑為 6cm,內(nèi)切圓的半徑為 2cm,則ABC 的外心與內(nèi)心之間的距離為   cm

【答案】1 (2),證明見解析 3

【解析】

1)根據(jù)線段的差求解即可;

2)根據(jù)點(diǎn)I是△ABC的內(nèi)心,推出,進(jìn)而根據(jù)外角性質(zhì)以及圓周角定理得到,即可得證;

3)利用(1)和(2)的結(jié)論可得,進(jìn)而得出,再代入求值即可.

1)∵IM R d

;

2

點(diǎn)I是△ABC的內(nèi)心

;

3)由(2)知

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形 ABCD 中,E BC 邊中點(diǎn).

)已知:如圖,若 AE 平分BAD,AED=90°,點(diǎn) F AD 上一點(diǎn),AF=AB.求證:(1ABEAFE;(2AD=AB+CD

)已知:如圖,若 AE 平分BAD,DE 平分ADC,AED=120°,點(diǎn) F,G 均為 AD上的點(diǎn),AF=AB,GD=CD.求證:(1GEF 為等邊三角形;(2AD=AB+ BC+CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:關(guān)于的函數(shù)的圖象與坐標(biāo)軸只有兩個(gè)不同的交點(diǎn)、,點(diǎn)坐標(biāo)為,則的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC是⊙O的內(nèi)接三角形,∠BAC的平分線交⊙O于點(diǎn)D

I)如圖①,若BC是⊙O的直徑,BC4,求BD的長(zhǎng);

)如圖②,若∠ABC的平分線交AD于點(diǎn)E,求證:DEDB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開展主題為“垃圾分類,綠色生活新時(shí)尚”的宣傳活動(dòng),為了解學(xué)生對(duì)垃圾分類知識(shí)的掌握情況,學(xué)生會(huì)隨機(jī)抽取了20名七、八年級(jí)學(xué)生(每個(gè)年級(jí)各10人)進(jìn)行問卷調(diào)查,并把他們的得分繪制成了如下表格,計(jì)分采用10分制(得分均取整數(shù))成績(jī)達(dá)到6分或6分以上為及格,達(dá)到9分及以上為優(yōu)秀,成績(jī)?nèi)绫?/span>1所示,并制作了成績(jī)分析表(表2).

1

七年級(jí)

5

8

8

8

10

10

8

5

5

八年級(jí)

10

6

6

9

4

5

7

10

8

2

年級(jí)

平均數(shù)

中位數(shù)

眾數(shù)

方差

及格率

優(yōu)秀率

七年級(jí)

7.6

8

8

3.82

70%

八年級(jí)

7.5

10

4.94

80%

40%

1)在表1中,_____,_____;在表2中,_____,______;

2)根據(jù)表2成績(jī)數(shù)據(jù)分析,你認(rèn)為哪個(gè)年級(jí)的學(xué)生對(duì)垃圾分類了解更加深入,請(qǐng)說明你的理由;

3)小明根據(jù)表2數(shù)據(jù)作出如下判斷:

①七年級(jí)學(xué)生成績(jī)的平均數(shù)高于八年級(jí),故七年級(jí)學(xué)生一定比八年級(jí)學(xué)生優(yōu)秀;

②被調(diào)查對(duì)象中,七年級(jí)學(xué)生的成績(jī)更加穩(wěn)定;

③學(xué)校七年級(jí)和八年級(jí)共有400人,估計(jì)有280人成績(jī)達(dá)到優(yōu)秀;

④七年級(jí)不及格人數(shù)比八年級(jí)多;

對(duì)小明的四個(gè)結(jié)論,隨機(jī)任選兩個(gè),求都是錯(cuò)誤的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明研究了這樣一道幾何題:如圖1,在中,把繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,把繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,連接.當(dāng)時(shí),請(qǐng)問上的中線的數(shù)量關(guān)系是什么?以下是他的研究過程:

特例驗(yàn)證:(1)①如圖2,當(dāng)為等邊三角形時(shí),猜想的數(shù)量關(guān)系為_______;②如圖3,當(dāng),時(shí),則長(zhǎng)為________

猜想論證:(2)在圖1中,當(dāng)為任意三角形時(shí),猜想的數(shù)量關(guān)系,并給予證明.

拓展應(yīng)用:(3)如圖4,在四邊形,,,,,在四邊形內(nèi)部是否存在點(diǎn),使之間滿足小明探究的問題中的邊角關(guān)系?若存在,請(qǐng)畫出點(diǎn)的位置(保留作圖痕跡,不需要說明)并直接寫出的邊上的中線的長(zhǎng)度;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著通訊技術(shù)的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷某校數(shù)學(xué)興趣小組設(shè)計(jì)了你最喜歡的溝通方式調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機(jī)調(diào)查了部分學(xué)生,將統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問題:

(1)這次統(tǒng)計(jì)共抽查了多少名學(xué)生?在扇形統(tǒng)計(jì)圖中,表示" "的扇形圓心角的度數(shù)是多少;

(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)該校共有1500名學(xué)生,請(qǐng)估計(jì)該校最喜歡用 “微信”進(jìn)行溝通的學(xué)生大約有多少名?

(4)某天甲、乙兩名同學(xué)都想從微信"、""、電話"三種溝通方式中選一種方式與對(duì)方聯(lián)系,請(qǐng)用列表或畫樹狀圖的方法求出甲、乙兩名同學(xué)恰好選擇同一種溝通方式的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲、乙只捕撈船同時(shí)從A港出海捕魚,甲船以每小時(shí)15 km的速度沿北偏西60°方向前進(jìn),乙船以每小時(shí)15 km的速度沿東北方向前進(jìn).甲船航行2 h到達(dá)C處,此時(shí)甲船發(fā)現(xiàn)漁具丟在了乙船上,于是甲船快速(勻速)沿北偏東75°的方向追趕乙船,結(jié)果兩船在B處相遇.問:

(1)甲船從C處出發(fā)追趕上乙船用了多少時(shí)間?

(2)甲船追趕乙船的速度是每小時(shí)多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線l1,l2,l3,l4是同一平面內(nèi)的一組平行線.

1)如圖1,正方形ABCD4個(gè)頂點(diǎn)都在這些平行線上,若四條直線中相鄰兩條之間的距離都是1,其中點(diǎn)A,點(diǎn)C分別在直線l1l4上,求正方形的面積.

2)如圖2,正方形ABCD4個(gè)頂點(diǎn)分別在四條平行線上,若四條直線中相鄰兩條之間的距離依次為h1,h2,h3

①求證:h1h3

②設(shè)正方形ABCD的面積為S,求證:S2h12+2h1h2+h22

查看答案和解析>>

同步練習(xí)冊(cè)答案