【題目】如圖,已知線段AB=18米,于點(diǎn)A,MA=6米,射線于點(diǎn)B,P點(diǎn)從B點(diǎn)出發(fā)向A運(yùn)動,每秒走1米,Q點(diǎn)從B點(diǎn)向D點(diǎn)運(yùn)動,每秒走2米,P,Q同時(shí)從B出發(fā),則出發(fā)x秒后,在線段MA上有一點(diǎn)C,使CAPPBQ全等,則x的值為(

A. 4 B. 6 C. 49 D. 69

【答案】B

【解析】

分兩種情況考慮:當(dāng)APC≌△BQP時(shí)與當(dāng)APC≌△BPQ時(shí),根據(jù)全等三角形的性質(zhì)即可確定出時(shí)間.

當(dāng)APCBQP時(shí),AP=BQ,即18x=2x,

解得:x=6;

當(dāng)APCBPQ時(shí),AP=BP=12AB=9米,

此時(shí)所用時(shí)間為9秒,AC=BQ=18米,不合題意,舍去;

綜上,出發(fā)6秒后,在線段MA上有一點(diǎn)C,使CAPPBQ全等.

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如圖,

已知,把線段分割成,,,若,為邊的三角形是一個(gè)直角三角形,則稱點(diǎn)是線段的勾股分割點(diǎn).

1)已知,把線段分割成,,若,,,則點(diǎn),是線段的勾股分割點(diǎn)嗎?請說明理由;

2)已知點(diǎn),是線段的勾股分割點(diǎn),且為直角邊,若,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線BD的垂直平分線MN與AD相交于點(diǎn)M,與BD相交于點(diǎn)O,與BC相交于N,連接BM,DN.

(1)求證:四邊形BMDN是菱形;

(2)若AB=2,AD=4,求MD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,海中有一小島A,它周圍8海里內(nèi)有暗礁,漁船跟蹤魚群由西向東航行,在B點(diǎn)測得小島A在北偏東60°方向上,航行12海里到達(dá)D點(diǎn),這時(shí)測得小島A在北偏東30°方向上.如果漁船不改變航線繼續(xù)向東航行,有沒有觸礁的危險(xiǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4cm,ECD邊的中點(diǎn),,MAE的中點(diǎn),過點(diǎn)M作直線分別與ADBC相交于點(diǎn)P、Q.若PQ=AE,則AP等于__________cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把n個(gè)邊長為1的正方形拼接成一排,求得tanBA1C=1,tanBA2C=,tanBA3C=,計(jì)算tanBA4C=_____,…按此規(guī)律,寫出tanBAnC=_____(用含n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司投資新建了一商場,共有商鋪30.據(jù)預(yù)測,當(dāng)每間的年租金定為10萬元時(shí),可全部租出.每間的年租金每增加5 000,少租出商鋪1.該公司要為租出的商鋪每間每年交各種費(fèi)用1萬元,未租出的商鋪每間每年交各種費(fèi)用5 000.

1)當(dāng)每間商鋪的年租金定為13萬元時(shí),能租出多少間?

2)當(dāng)每間商鋪的年租金定為多少萬元時(shí),該公司的年收益(收益=租金-各種費(fèi)用)為275萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E的中點(diǎn),延長的延長線于點(diǎn)F,,DCBF

1)求證:;

2)若,求證:為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形中,,∠,點(diǎn)的中點(diǎn),點(diǎn)的邊上,若為等腰三角形,則的長為__________

查看答案和解析>>

同步練習(xí)冊答案