【題目】某地區(qū)為了進一步緩解交通擁堵問題,決定修建一條長為7千米的公路.如果平均每天的修建費y(萬元)與修建天數(shù)x(天)在30≤x≤12 0之間時具有一次函數(shù)的關(guān)系,如下表所示.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)后來在修建的過程中計劃發(fā)生改變,政府決定多修3千米,因此在沒有增減建設(shè)力量的情況下,修完這條路比計劃晚了15天,求原計劃每天的修建費.
【答案】(1)y與x之間的函數(shù)關(guān)系式為: (30≤x≤120);
(2)原計劃每天的修建費為43萬元.
【解析】試題分析:(1)設(shè)y與x之間的函數(shù)關(guān)系式為y=kx+b,運用待定系數(shù)法就可以求出y與x之間的函數(shù)關(guān)系式;(2)設(shè)原計劃要m天完成,則增加3km后用了(m+15)天,根據(jù)每天修建的工作量不變建立方程求出其解,就可以求出計劃的時間,然后代入(1)的解析式就可以求出結(jié)論.
(1)設(shè)y與x之間的函數(shù)關(guān)系式為,由題意,得
,解得:
∴y與x之間的函數(shù)關(guān)系式為: (30≤x≤120)
(2)設(shè)原計劃要m天完成,則增加3km后用了(m+15)天,由題意,得
,
解并檢驗得:m=35.
∴.
答:原計劃每天的修建費為43萬元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,海上有一燈塔P,在它周圍3海里處有暗礁.一艘客輪以9海里/時的速度由西向東航行,行至A點處測得P在它的北偏東60度的方向,繼續(xù)行駛20分鐘后,到達B處又測得燈塔P在它的北偏東45度方向. 問客輪不改變方向繼續(xù)前進有無觸礁的危險?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將3p﹣(m+5n﹣4)去括號,下列結(jié)論正確的是( )
A.3p﹣m+5n+4B.3p﹣m+5n﹣4
C.3P﹣m﹣5n﹣4D.3p﹣m﹣5n+4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,點P在AD上,AB=2,AP=1.將直角尺的頂點放在P處,直角尺的兩邊分別交AB,BC于點E,F(xiàn),連接EF(如圖①).
(1)當(dāng)點E與點B重合時,點F恰好與點C重合(如圖②),求PC的長;
(2)探究:將直尺從圖②中的位置開始,繞點P順時針旋轉(zhuǎn),當(dāng)點E和點A重合時停止.在這個過程中,請你觀察、猜想,并解答:
①tan∠ PEF的值是否發(fā)生變化?請說明理由;
②直接寫出從開始到停止,線段EF的中點經(jīng)過的路線長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解全校學(xué)生的上學(xué)方式,在全校1000名學(xué)生中隨機抽取了150名學(xué)生進行調(diào)查.下列說法正確的是( 。
A. 總體是全校學(xué)生
B. 樣本容量是1000
C. 個體是每名學(xué)生的上學(xué)時間
D. 樣本是隨機抽取的150名學(xué)生的上學(xué)方式
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在□ABCD中,E、F分別是AB、CD的中點,AF與DE相交于點G,CE與BF相交于點H.
(1)求證:四邊形EHFG是平行四邊形;
(2)若四邊形EHFG是矩形,則□ABCD應(yīng)滿足的條件是 (不需要證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖所示,B、C、D三點在同一條直線上,AC=CD,∠B=∠E=90°,AC⊥CD,則不正確的結(jié)論是( 。
A. ∠A與∠D互為余角 B. ∠A=∠2 C. △ABC≌△ CED D. ∠1=∠2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com