如圖1,拋物線y=ax2+bx+c(a>0)的頂點(diǎn)為M,直線y=m與x軸平行,且與拋物線交于點(diǎn)A,B,若△AMB為等腰直角三角形,我們把拋物線上A,B兩點(diǎn)之間的部分與線段AB圍成的圖形稱為該拋物線對(duì)應(yīng)的準(zhǔn)蝶形,線段AB稱為碟寬,頂點(diǎn)M稱為碟頂,點(diǎn)M到線段AB的距離稱為碟高.
(1)拋物線y=x2對(duì)應(yīng)的碟寬為 4 ;拋物線y=4x2對(duì)應(yīng)的碟寬為 ;拋物線y=ax2(a>0)對(duì)應(yīng)的碟寬為 ;拋物線y=a(x﹣2)2+3(a>0)對(duì)應(yīng)的碟寬為 ;
(2)拋物線y=ax2﹣4ax﹣(a>0)對(duì)應(yīng)的碟寬為6,且在x軸上,求a的值;
(3)將拋物線y=anx2+bnx+cn(an>0)的對(duì)應(yīng)準(zhǔn)蝶形記為Fn(n=1,2,3…),定義F1,F(xiàn)2,…,F(xiàn)n為相似準(zhǔn)蝶形,相應(yīng)的碟寬之比即為相似比.若Fn與Fn﹣1的相似比為,且Fn的碟頂是Fn﹣1的碟寬的中點(diǎn),現(xiàn)將(2)中求得的拋物線記為y1,其對(duì)應(yīng)的準(zhǔn)蝶形記為F1.
①求拋物線y2的表達(dá)式;
②若F1的碟高為h1,F(xiàn)2的碟高為h2,…Fn的碟高為hn,則hn= ,F(xiàn)n的碟寬有端點(diǎn)橫坐標(biāo)為 ;F1,F(xiàn)2,…,F(xiàn)n的碟寬右端點(diǎn)是否在一條直線上?若是,直接寫出該直線的表達(dá)式;若不是,請(qǐng)說(shuō)明理由.
解:(1)4;1;;.
分析如下:
∵a>0,
∴y=ax2的圖象大致如下:
其必過(guò)原點(diǎn)O,記AB為其碟寬,AB與y軸的交點(diǎn)為C,連接OA,OB.
∵△DAB為等腰直角三角形,AB∥x軸,
∴OC⊥AB,
∴∠OCA=∠OCB=∠AOB=90°=45°,
∴△ACO與△BCO亦為等腰直角三角形,
∴AC=OC=BC,
∴xA=yA,xB=yB,代入y=ax2,
∴A(﹣,),B(,),C(0,),
∴AB=,OC=,
即y=ax2的碟寬為.
①拋物線y=x2對(duì)應(yīng)的a=,得碟寬為4;
②拋物線y=4x2對(duì)應(yīng)的a=4,得碟寬為為;
③拋物線y=ax2(a>0),碟寬為;
④拋物線y=a(x﹣2)2+3(a>0)可看成y=ax2向右平移2個(gè)單位長(zhǎng)度,再向上平移3個(gè)單位長(zhǎng)度后得到的圖形,
∵平移不改變形狀、大小、方向,
∴拋物線y=a(x﹣2)2+3(a>0)的準(zhǔn)碟形≌拋物線y=ax2的準(zhǔn)碟,
∵拋物線y=ax2(a>0),碟寬為,
∴拋物線y=a(x﹣2)2+3(a>0),碟寬為.
(2)∵y=ax2﹣4ax﹣=a(x﹣2)2﹣(4a+),
∴同(1),其碟寬為,
∵y=ax2﹣4ax﹣的碟寬為6,
∴=6,
解得 a=,
∴y=(x﹣2)2﹣3.
(3)①∵F1的碟寬:F2的碟寬=2:1,
∴,
∵a1=,
∴a2=.
∵y=(x﹣2)2﹣3的碟寬AB在x軸上(A在B左邊),
∴A(﹣1,0),B(5,0),
∴F2的碟頂坐標(biāo)為(2,0),
∴y2=(x﹣2)2.
②∵Fn的準(zhǔn)碟形為等腰直角三角形,
∴Fn的碟寬為2hn,
∵2hn:2hn﹣1=1:2,
∴hn=hn﹣1=()2hn﹣2=()3hn﹣3=…=()n+1h1,
∵h(yuǎn)1=3,
∴hn=.
∵h(yuǎn)n∥hn﹣1,且都過(guò)Fn﹣1的碟寬中點(diǎn),
∴h1,h2,h3,…,hn﹣1,hn都在一條直線上,
∵h(yuǎn)1在直線x=2上,
∴h1,h2,h3,…,hn﹣1,hn都在直線x=2上,
∴Fn的碟寬右端點(diǎn)橫坐標(biāo)為2+.
另,F(xiàn)1,F(xiàn)2,…,F(xiàn)n的碟寬右端點(diǎn)在一條直線上,直線為y=﹣x+5.
分析如下:
考慮Fn﹣2,F(xiàn)n﹣1,F(xiàn)n情形,關(guān)系如圖2,
Fn﹣2,F(xiàn)n﹣1,F(xiàn)n的碟寬分別為AB,DE,GH;C,F(xiàn),I分別為其碟寬的中點(diǎn),都在直線x=2上,連接右端點(diǎn),BE,EH.
∵AB∥x軸,DE∥x軸,GH∥x軸,
∴AB∥DE∥GH,
∴GH平行相等于FE,DE平行相等于CB,
∴四邊形GFEH,四邊形DCBE都為平行四邊形,
∴HE∥GF,EB∥DC,
∵∠GFI=•∠GFH=•∠DCE=∠DCF,
∴GF∥DC,
∴HE∥EB,
∵HE,EB都過(guò)E點(diǎn),
∴HE,EB在一條直線上,
∴Fn﹣2,F(xiàn)n﹣1,F(xiàn)n的碟寬的右端點(diǎn)是在一條直線,
∴F1,F(xiàn)2,…,F(xiàn)n的碟寬的右端點(diǎn)是在一條直線.
∵F1:y1=(x﹣2)2﹣3準(zhǔn)碟形右端點(diǎn)坐標(biāo)為(5,0),
F2:y2=(x﹣2)2準(zhǔn)碟形右端點(diǎn)坐標(biāo)為(2+,),
∴待定系數(shù)可得過(guò)兩點(diǎn)的直線為y=﹣x+5,
∴F1,F(xiàn)2,…,F(xiàn)n的碟寬的右端點(diǎn)是在直線y=﹣x+5上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
一個(gè)布袋里裝有5個(gè)球,其中3個(gè)紅球,2個(gè)白球,每個(gè)球除顏色外其他完全相同,從中任意摸出一個(gè)球,是紅球的概率是()
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖:我漁政310船在南海海面上沿正東方向勻速航行,在A點(diǎn)觀測(cè)到我漁船C在北偏東60°方向的我國(guó)某傳統(tǒng)漁場(chǎng)捕魚作業(yè).若漁政310船航向不變,航行半小時(shí)后到達(dá)B點(diǎn),觀測(cè)到我漁船C在東北方向上.問(wèn):漁政310船再按原航向航行多長(zhǎng)時(shí)間,離漁船C的距離最近?(漁船C捕魚時(shí)移動(dòng)距離忽略不計(jì),結(jié)果不取近似值.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在平面直角坐標(biāo)系中,Rt△PBD的斜邊PB落在y軸上,tan∠BPD=.延長(zhǎng)BD交x軸于點(diǎn)C,過(guò)點(diǎn)D作DA⊥x軸,垂足為A,OA=4,OB=3.
(1)求點(diǎn)C的坐標(biāo);
(2)若點(diǎn)D在反比例函數(shù)y=(k>0)的圖象上,求反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,△ABC中,∠C=45°,點(diǎn)D在AB上,點(diǎn)E在BC上.若AD=DB=DE,AE=1,則AC的長(zhǎng)為( 。
| A. |
| B. | 2 | C. |
| D. |
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,直線y=2x+4與x,y軸分別交于A,B兩點(diǎn),以O(shè)B為邊在y軸右側(cè)作等邊三角形OBC,將點(diǎn)C向左平移,使其對(duì)應(yīng)點(diǎn)C′恰好落在直線AB上,則點(diǎn)C′的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
二次函數(shù)(其中),
(1)當(dāng)時(shí),求二次函數(shù)的對(duì)稱軸;
(2)若是△的三邊長(zhǎng),當(dāng)時(shí),二次函數(shù)最小值為,試判斷△的形狀,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com