【題目】在一條筆直的公路上有AB兩地,甲騎自行車從A地到B地;乙騎自行車從B地到A地,到達(dá)A地后立即按原路返回,如圖是甲、乙兩人離B地的距離ykm)與行駛時(shí)xh)之間的函數(shù)圖象,根據(jù)圖象解答以下問題:

1)寫出A、B兩地直接的距離;

2)求出點(diǎn)M的坐標(biāo),并解釋該點(diǎn)坐標(biāo)所表示的實(shí)際意義;

3)若兩人之間保持的距離不超過3km時(shí),能夠用無線對講機(jī)保持聯(lián)系,請直接寫出甲、乙兩人能夠用無線對講機(jī)保持聯(lián)系時(shí)x的取值范圍.

【答案】130千米;(2)點(diǎn)M的坐標(biāo)為(,20),表示小時(shí)后兩車相遇,此時(shí)距離B20千米;(3)當(dāng)≤x≤≤x≤2時(shí),甲、乙兩人能夠用無線對講機(jī)保持聯(lián)系.

【解析】

1x=0時(shí)甲的y值即為AB兩地的距離;

2)根據(jù)圖象求出甲、乙兩人的速度,再利用相遇問題求出相遇時(shí)間,然后求出乙的路程即可得到點(diǎn)M的坐標(biāo)以及實(shí)際意義;

3)分相遇前和相遇后兩種情況求出x的值,再求出最后兩人都到達(dá)B地前兩人相距3千米的時(shí)間,然后寫出兩個(gè)取值范圍即可.

解:(1∵x=0時(shí),甲距離B30千米,

∴A、B兩地的距離為30千米.

2)由圖可知,甲的速度:30÷2=15千米/時(shí),乙的速度:30÷1=30千米/時(shí),

30÷15+30=×30=20千米.

點(diǎn)M的坐標(biāo)為(,20),表示小時(shí)后兩車相遇,此時(shí)距離B20千米.

3)設(shè)x小時(shí)時(shí),甲、乙兩人相距3km,

若是相遇前,則15x+30x=303,解得x=

若是相遇后,則15x+30x=30+3,解得x=

若是到達(dá)B地前,則15x30x1=3,解得x=

當(dāng)≤x≤≤x≤2時(shí),甲、乙兩人能夠用無線對講機(jī)保持聯(lián)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,把ABC放置在每個(gè)小正方形邊長為1的網(wǎng)格中,點(diǎn)A,B,C均在格點(diǎn)上,建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系xOy,使點(diǎn)A1,4),ABCA'B'C'關(guān)于y軸對稱.

1)畫出該平面直角坐標(biāo)系與A'B'C';

2)在y軸上找點(diǎn)P,使PC+PB'的值最小,求點(diǎn)P的坐標(biāo)與PC+PB'的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】春節(jié)前小王花1200元從農(nóng)貿(mào)市場購進(jìn)批發(fā)價(jià)分別為每箱30元與50元的A,B兩種水果進(jìn)行銷售,并分別以每箱35元與60元的價(jià)格出售,設(shè)購進(jìn)A水果x箱,B水果y.

(1)讓小王將水果全部售出共賺了215元,則小王共購進(jìn)A、B水果各多少箱?

(2)若要求購進(jìn)A水果的數(shù)量不得少于B水果的數(shù)量,則應(yīng)該如何分配購進(jìn)A, B水果的數(shù)量并全部售出才能獲得最大利潤,此時(shí)最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校隨機(jī)抽取部分學(xué)生,對“學(xué)習(xí)習(xí)慣”進(jìn)行問卷調(diào)查.

設(shè)計(jì)的問題:對自己做錯(cuò)的題目進(jìn)行整理、分析、改正;

答案選項(xiàng)為:A:很少,B:有時(shí),C:常常,D:總是;

將調(diào)查結(jié)果的數(shù)據(jù)進(jìn)行了整理、繪制成部分統(tǒng)計(jì)圖如下:

請根據(jù)圖中信息,解答下列問題:

1)該調(diào)查的樣本容量為 ,a= %b= %,“常!睂(yīng)扇形的圓心角為

2)請你補(bǔ)全條形統(tǒng)計(jì)圖;

3)若該校有3200名學(xué)生,請你估計(jì)其中“常常”和“總是”對錯(cuò)題進(jìn)行整理、分析、改正的學(xué)生各有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E,F(xiàn)是平行四邊形ABCD對角線AC上兩點(diǎn),AE=CF=AC.連接DE,DF并延長,分別交AB,BC于點(diǎn)G,H,連接GH,則的值為( 。

A. B. C. D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解學(xué)生的安全意識(shí)情況,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,根據(jù)查結(jié)果,把學(xué)生的安全意識(shí)分成淡薄、一般、較強(qiáng)、很強(qiáng)四個(gè)層次,并繪制成如下兩幅尚不完整的統(tǒng)計(jì)圖:

根據(jù)以上信息,解答下列問題:

1)該校有1200名學(xué)生,現(xiàn)要對安全意識(shí)為淡薄、一般的學(xué)生強(qiáng)化安全教育,根據(jù)調(diào)查結(jié)果,估計(jì)全校需要強(qiáng)化安全教育的學(xué)生約有多少名?

2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整.

3)求出安全意識(shí)為較強(qiáng)的學(xué)生所占的百分比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角三角形ABC中,點(diǎn)D,E分別在邊AC,AB上,AGBC于點(diǎn)G,AFDE于點(diǎn)F,EAF=GAC.

(1)求證:ADE∽△ABC;

(2)若AD=3,AB=5,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABO的直徑,BCAB,連結(jié)OC,弦ADOC,直線CDBA的延長線于點(diǎn)E

1)求證:直線CDO的切線;

2)若DE=2BC,求ADOC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖點(diǎn)E,F分別是矩形ABCD的邊AD,AB上一點(diǎn),若AE=DC=2ED,且EFEC

1)求證:點(diǎn)FAB的中點(diǎn).

2)延長EFCB的延長線相交于點(diǎn)H,連接AH,已知ED=2,求AH的值.

查看答案和解析>>

同步練習(xí)冊答案