【題目】在Rt△ABC中,∠C=90°,AC=3,BC=4,D是AB上一動點(不與A、B重合),DE⊥AC于點E,DF⊥BC于點F,點D由A向B移動時,矩形DECF的周長變化情況是( )
A. 逐漸減小 B. 逐漸增大 C. 先增大后減小 D. 先減小后增大
【答案】A
【解析】試題分析:設(shè)DE=λ,運(yùn)用相似三角形的性質(zhì),將矩形DECF的周長表示為λ的一次函數(shù)的形式,運(yùn)用函數(shù)的性質(zhì)即可解決問題.
解:設(shè)DE=λ,DF=μ;
∵DE⊥AC于點E,DF⊥BC于點F,
∴四邊形DECF為矩形,
∴CF=DE=λ,CE=DF=μ,
∴矩形DECF的周長η=2λ+2μ;
∵DE∥BC,
∴△ADE∽△ABC,
∴①;同理可證②,
由①+②得:,
∴μ=8﹣
∴η=2λ+16﹣
=+16,
∵<0,
∴η隨λ的增大而減。
∵點D從靠近點A的某一點向點B移動時,λ逐漸變大,
∴矩形DECF的周長η逐漸減。
故選A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的方程x2﹣x+a=0有實根.
(1)求a的取值范圍;
(2)設(shè)x1、x2是方程的兩個實數(shù)根,且滿足(x1+1)(x2+1)=﹣1,求實數(shù)a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題背景:
如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分別是BC,CD上的點,且∠EAF=60°,探究圖中線段BE,EF,FD之間的數(shù)量關(guān)系.
小王同學(xué)探究此問題的方法是延長FD到點G,使DG=BE,連結(jié)AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是 ;
(2)探索延伸:
如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°,E,F分別是BC,CD上的點,且∠EAF=∠BAD,上述結(jié)論是否仍然成立,并說明理由;
(3)結(jié)論應(yīng)用:
如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等.接到行動指令后,艦艇甲向正東方向以60海里/小時的速度前進(jìn),艦艇乙沿北偏東50°的方向以80海里/小時的速度前進(jìn),1.5小時后,指揮中心觀測到甲、乙兩艦艇分別到達(dá)E,F處,且兩艦艇與指揮中心O之間夾角∠EOF=70°,試求此時兩艦艇之間的距離.
(4)能力提高:
如圖4,等腰直角三角形ABC中,∠BAC=90°,AB=AC,點M,N在邊BC上,且∠MAN=45°.若BM=1,CN=3,試求出MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩條互相平行的河岸,在河岸一邊測得AB為20米,在另一邊測得CD為70米,用測角器測得∠ACD=30°,測得∠BDC=45°,求兩條河岸之間的距離.(, ≈1.7,結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,C、D是半圓O上的兩點,且OD∥BC,OD與AC交于點E.
(1)若∠B=70°,求∠CAD的度數(shù);
(2)若AB=4,AC=3,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線交軸于, 兩點,交軸于點,直線經(jīng)過坐標(biāo)原點,與拋物線的一個交點為,與拋物線的對稱交于點,連接,點, 的坐標(biāo)分別為, .
()求拋物線的解析式,并分別求出點和點的坐標(biāo).
()在拋物線上是否存在點,使≌,若存在,求出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com