【題目】如圖,在△ABC中,AE=CD,∠ABC=90°,D為AB延長線上一點(diǎn),點(diǎn)E在BC邊上,且BE=BD,連接AE,DE,DC.
(1)求證:△ABE≌△CBD;
(2)若∠CAE=30°,求∠BDC的度數(shù).
【答案】(1)證明過程見解析;(2)75°
【解析】
(1)根據(jù)“∠ABC=90°,D為AB延長線上一點(diǎn)”得出兩個(gè)三角形均為直角三角形,再根據(jù)HL即證;
(2)根據(jù)(1)得出AB=CB,∠AEB=∠CDB,得出∠BAC=∠BCA=45°,再利用外角性質(zhì)即可得出答案.
(1)證明:∵∠ABC=90°,D為AB延長線上一點(diǎn)
∴∠CBD=90°
∴△ABE和△CBD均為直角三角形
在RT△ABE和RT△CBD中
∴RT△ABE≌RT△CBD(HL)
(2)解:∵RT△ABE≌RT△CBD
∴AB=CB,∠AEB=∠CDB
又∠ABC=90°
∴∠BAC=∠BCA=45°
又∠CAE=30°
∴∠AEB=∠CAE+∠BCA=75°
∴∠CDB=∠AEB=75°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線與x軸相交于點(diǎn)A(﹣2,0)、B(4,0),與y軸交于點(diǎn)C(0,﹣4),BC與拋物線的對(duì)稱軸相交于點(diǎn)D.
(1)求該拋物線的表達(dá)式,并直接寫出點(diǎn)D的坐標(biāo);
(2)過點(diǎn)A作AE⊥AC交拋物線于點(diǎn)E,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘漁船正自西向東航行追趕魚群,在A處望見島C在船的北偏東60°方向,前進(jìn)20海里到達(dá)B處,此時(shí)望見島C在船的北偏東30°方向,以島C為中心的12海里內(nèi)為軍事演習(xí)的危險(xiǎn)區(qū).請(qǐng)通過計(jì)算說明:如果這艘漁船繼續(xù)向東追趕魚群是否有進(jìn)入危險(xiǎn)區(qū)的可能.(參考數(shù)據(jù):≈1.4,≈1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的面積為4,點(diǎn)F,G分別是AB,DC的中點(diǎn),將點(diǎn)A折到FG上的點(diǎn)P處,折痕為BE,點(diǎn)E在AD上,則AE長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖所示直線y=kx+2(k≠0)與反比例函數(shù)y=(m≠0)分別交于點(diǎn)P,與y軸、x軸分別交于點(diǎn)A和點(diǎn)B,且cos∠ABO=,過P點(diǎn)作x軸的垂線交于點(diǎn)C,連接AC,
(1)求一次函數(shù)的解析式.
(2)若AC是△PCB的中線,求反比例函數(shù)的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校舉行全體學(xué)生“漢字聽寫”比賽,每位學(xué)生聽寫漢字39個(gè).隨機(jī)抽取了部分學(xué)生的聽寫結(jié)果,繪制成如下的圖表.
組別 | 正確字?jǐn)?shù)x | 人數(shù) |
A | 0≤x<8 | 10 |
B | 8≤x<16 | 15 |
C | 16≤x<24 | 25 |
D | 24≤x<32 | m |
E | 32≤x<40 | n |
根據(jù)以上信息完成下列問題:
(1)統(tǒng)計(jì)表中的m= ,n= ,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)扇形統(tǒng)計(jì)圖中“C組”所對(duì)應(yīng)的圓心角的度數(shù)是 ;
(3)已知該校共有900名學(xué)生,如果聽寫正確的字的個(gè)數(shù)少于24個(gè)定為不合格,請(qǐng)你估計(jì)該校本次聽寫比賽不合格的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰與等腰,,,,連接和相交于點(diǎn),交于點(diǎn),交與點(diǎn).下列結(jié)論:①;②;③平分;④若,則.其中一定正確的結(jié)論的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)G,過點(diǎn)G作EF ∥BC交AB于E,交AC于F,過點(diǎn)G作GD⊥ AC于D,下列四個(gè)結(jié)論:①EF = BE+CF;②∠BGC= 90 °+∠A;③點(diǎn)G到△ ABC各邊的距離相等;④設(shè)GD =m,AE + AF =n,則S△AEF=mn.其中正確的結(jié)論有( )
A.1 個(gè)B.2 個(gè)C.3 個(gè)D.4 個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com