【題目】如圖,在ABC中,AECD,∠ABC90°,DAB延長線上一點(diǎn),點(diǎn)EBC邊上,且BEBD,連接AE,DE,DC.

(1)求證:ABE≌△CBD;

(2)若∠CAE30°,求∠BDC的度數(shù).

【答案】1)證明過程見解析;(275°

【解析】

1)根據(jù)ABC90°DAB延長線上一點(diǎn)得出兩個(gè)三角形均為直角三角形,再根據(jù)HL即證;

2)根據(jù)(1)得出AB=CB,∠AEB=CDB,得出∠BAC=BCA=45°,再利用外角性質(zhì)即可得出答案.

1)證明:∵∠ABC90°,DAB延長線上一點(diǎn)

∴∠CBD=90°

∴△ABE和△CBD均為直角三角形

RTABERTCBD

RTABERTCBD(HL)

2)解:∵RTABERTCBD

AB=CB,∠AEB=CDB

又∠ABC90°

∴∠BAC=BCA=45°

又∠CAE30°

∴∠AEB=CAE+BCA=75°

∴∠CDB=∠AEB=75°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線與x軸相交于點(diǎn)A(﹣2,0)、B(4,0),與y軸交于點(diǎn)C(0,﹣4),BC與拋物線的對(duì)稱軸相交于點(diǎn)D.

(1)求該拋物線的表達(dá)式,并直接寫出點(diǎn)D的坐標(biāo);

(2)過點(diǎn)AAEAC交拋物線于點(diǎn)E,求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘漁船正自西向東航行追趕魚群,在A處望見島C在船的北偏東60°方向,前進(jìn)20海里到達(dá)B處,此時(shí)望見島C在船的北偏東30°方向,以島C為中心的12海里內(nèi)為軍事演習(xí)的危險(xiǎn)區(qū).請(qǐng)通過計(jì)算說明:如果這艘漁船繼續(xù)向東追趕魚群是否有進(jìn)入危險(xiǎn)區(qū)的可能.(參考數(shù)據(jù):≈1.4,≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,則AB=_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的面積為4,點(diǎn)F,G分別是AB,DC的中點(diǎn),將點(diǎn)A折到FG上的點(diǎn)P處,折痕為BE,點(diǎn)EAD上,則AE長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖所示直線y=kx+2(k0)與反比例函數(shù)y=(m0)分別交于點(diǎn)P,與y軸、x軸分別交于點(diǎn)A和點(diǎn)B,且cosABO=,過P點(diǎn)作x軸的垂線交于點(diǎn)C,連接AC,

(1)求一次函數(shù)的解析式.

(2)若AC是△PCB的中線,求反比例函數(shù)的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校舉行全體學(xué)生漢字聽寫比賽,每位學(xué)生聽寫漢字39個(gè).隨機(jī)抽取了部分學(xué)生的聽寫結(jié)果,繪制成如下的圖表.

組別

正確字?jǐn)?shù)x

人數(shù)

A

0≤x<8

10

B

8≤x<16

15

C

16≤x<24

25

D

24≤x<32

m

E

32≤x<40

n

根據(jù)以上信息完成下列問題:

(1)統(tǒng)計(jì)表中的m=   ,n=   ,并補(bǔ)全條形統(tǒng)計(jì)圖;

(2)扇形統(tǒng)計(jì)圖中“C所對(duì)應(yīng)的圓心角的度數(shù)是   ;

(3)已知該校共有900名學(xué)生,如果聽寫正確的字的個(gè)數(shù)少于24個(gè)定為不合格,請(qǐng)你估計(jì)該校本次聽寫比賽不合格的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰與等腰,,,,連接相交于點(diǎn),交于點(diǎn),交與點(diǎn).下列結(jié)論:①;②;③平分;④若,則.其中一定正確的結(jié)論的個(gè)數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)G,過點(diǎn)GEF BCABE,交ACF,過點(diǎn)GGD ACD,下列四個(gè)結(jié)論:①EF = BE+CF;②∠BGC= 90 °+A;③點(diǎn)G ABC各邊的距離相等;④設(shè)GD =mAE + AF =n,則SAEF=mn.其中正確的結(jié)論有(

A.1 個(gè)B.2 個(gè)C.3 個(gè)D.4 個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案