精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在平面直角坐標系中,為坐標原點,平行四邊形的邊軸正半軸上,頂點軸正半軸上,函數的圖像經過點,點是線段上接近點的三等分點,,垂足為點,且恰好是線段的中點,連結交于點,則四邊形的面積是()

A.B.5C.D.

【答案】C

【解析】

先證明△ADO△BCH,把所求面積進行轉換,利用已知條件,把所構造的矩形面積計算出來,利用,用排除法可以得到答案.

解:如圖,過B點向x軸作垂線,交x軸于點H,

易知四邊形AOHB是矩形,

是平行四邊形,

AD=BC,∠ADC=BCH,

,且恰好是線段的中點,

,且AF=CH

∴△ADO△BCHSAS),

(等量替換),

,

選項B、C、D都大于等于5,因此排除,

故答案為A.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,直線y4x與雙曲線y交于A,B兩點,過B作直線BCy軸,垂足為C,則以OA為直徑的圓與直線BC的交點坐標是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD的四個頂點分別在扇形OEF的半徑OE、OF和弧EF上,且點A是線段OB的中點,若弧EF的長為π,則OD長為______________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一次函數的圖像與x軸的負半軸相交于點A,與y軸的正半軸相交于點B,且OAB的外接圓的圓心M的橫坐標為-3.

1)求一次函數的解析式;

2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某工廠有甲種原料,乙種原料,現用兩種原料生產處兩種產品共件,已知生產每件產品需甲種原料,乙種原料,且每件產品可獲得元;生產每件產品甲種原料,乙種原料,且每件產品可獲利潤元,設生產產品 件(產品件數為整數件),根據以上信息解答下列問題:

(1)生產兩種產品的方案有哪幾種?

(2)設生產這件產品可獲利元,寫出關于的函數解析式,寫出(1)中利潤最大的方案,并求出最大利潤.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為測量底面為圓形的古塔的高度,小紅和小明應用不同方法對其展開了研究,以下是他們各自的研究方法和研究數據:

小紅:如圖1,測角儀的高度均為,分別測得古塔頂端的仰角為,,測角儀底端的距離

小明:如圖2,測角儀的高度為,測得古塔頂端的仰角為,測角儀所在位置與古塔底部邊緣的最短距離.(參考數據:,,,,,,)小明利用測得的數據計算古塔高度

問題1:指出小明計算過程中的錯誤之處;

問題2:利用兩人的測量數據,求出古塔底面圓的半徑(結果精確到).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為2,點EBC的中點,AEBD交于點P,FCD上一點,連接AF分別交BD,DE于點MN,且AFDE,連接PN,則以下結論中:①FCD的中點;②3AM=2DE;③tanEAF;④;⑤△PMN∽△DPE,正確的結論個數是(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某市為了解九年級學生的身體素質測試情況,隨機抽取了該市九年級部分學生的身體素質測試成績作為樣本,按(優(yōu)秀),(良好),(合格),(不合格)四個等級進行統(tǒng)計,并將統(tǒng)計結果繪制了下面兩幅不完整的統(tǒng)計圖,請根據圖中提供的信息,解答下列問題:

1)此次共調查了多少名學生?

2)將條形統(tǒng)計圖補充完整,并計算扇形統(tǒng)計圖中部分所對應的圓心角的度數.

3)該市九年級共有9000名學生參加了身體素質測試,估計測試成績在良好以上(含良好)的人數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】隨著生活水平的提高,人們對飲水品質的需求越來越高,某公司根據市場需求代理A,B兩種型號的凈水器,每臺A型凈水器比每臺B型凈水器進價多200元,用5萬元購進A型凈水器與用4.5萬元購進B型凈水器的數量相等

1)求每臺A型、B型凈水器的進價各是多少元?

2)該公司計劃購進A,B兩種型號的凈水器共50臺進行試銷,其中A型凈水器為x臺,購買資金不超過9.8萬元,試銷時A型凈水器每臺售價2500元,B型凈水器每臺售價2180元,公司決定從銷售A型凈水器的利潤中按每臺捐獻a元作為公司幫扶貧困村飲水改造資金.若公司售完50臺凈水器并捐獻扶貧資金后獲得的最大利潤不低于20200元但不超過23000元,求a的取值范圍.

查看答案和解析>>

同步練習冊答案