【題目】有一塊含30°角的直角三角板OMN,其中∠MON90°,∠NMO30°,ON2,將這塊直角三角板按如圖所示位置擺放.等邊ABC的頂點B與點O重合,BC邊落在OM上,點A恰好落在斜邊MN上,將等邊ABC從圖1的位置沿OM方向以每秒1個單位長度的速度平移,邊AB,AC分別與斜邊MN交于點EF(如圖2所示),設ABC平移的時間為ts)(0t6).

1)等邊ABC的邊長為   ;

2)在運動過程中,當   時,MN垂直平分AB;

3)當0t6時,求直角三角板OMN與等邊ABC重疊部分的面積S與時間t之間的函數(shù)關系式.

【答案】13;(23;(3.

【解析】

1)根據(jù),∠OMN30°ABC為等邊三角形,求證OAM為直角三角形,然后即可得出答案.

2)易知當點CM重合時直線MN平分線段AB,此時OB3,由此即可解決問題;

3)分兩種情形分別求解:當0t≤3時,作CDFMD.根據(jù)SSMEB2SMDC,計算即可.②當3t6時,SSMEB

解:(1)在RtMON中,∵∠MON90°,ON2,∠M30°

OMON6,

∵△ABC為等邊三角形

∴∠AOC60°,

∴∠OAM90°

OAMN,即OAM為直角三角形,

OAOM×63

故答案為3

2)易知當點CM重合時直線MN平分線段AB,此時OB3,所以t3

故答案為3

3)易知:OM6,MN4,SOMN×2×66,

∵∠M30°,∠MBA60°

∴∠BEM90°

①當0t≤3時,作CDFMD

∵∠ACB60°,∠M30°,∠FCB=∠M+CFM

∴∠CFM=∠M30°,

CFCM,

CDFM

DFDM,

SCMF2SCDM

∵△MEB∽△MON,

SMEB,

∵△MDC∽△MON

,

SMDC

SSMEB2SMDC=﹣

②當3t6時,SSMEB,

綜上所述,S

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如圖的方式放置,點A1,A2,A3和點C1,C2,C3分別在直線y=x+1x軸上,則點Bn的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】大眾服裝店今年4月用4000元購進了一款襯衣若干件,上市后很快售完,服裝店于5月初又購進該款襯衣,進貨量比第一批增加了20%,由于第二批襯衣進貨時價格比第一批襯衣進貨時價格提高了20元,結果第二批襯衣進貨用了6000

1)第一批襯衣進貨時價格是多少?

2)第一批襯衣售價為120/件,為保證第二批襯衣的利潤率不低于第一批襯衣的利潤率,那么第二批襯衣每件售價至少是多少元?(提示:利潤=售價﹣成本,利潤率=利潤÷成本×100%

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,∠ACB=90°,OC=2OB,tan∠ABC=2,點B的坐標為(1,0).拋物線y=﹣x2+bx+c經(jīng)過A、B兩點.

(1)求拋物線的解析式;

(2)點P是直線AB上方拋物線上的一點,過點P作PD垂直x軸于點D,交線段AB于點E,使PE=DE.

①求點P的坐標;

②在直線PD上是否存在點M,使△ABM為直角三角形?若存在,求出符合條件的所有點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABDC,ABAD,對角線AC,BD交于點OAC平分BAD,過點CCEABAB的延長線于點E,連接OE

(1)求證:四邊形ABCD是菱形;

(2)若AB,BD=2,求OE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一塊含30°角的直角三角板OMN,其中∠MON90°,∠NMO30°,ON2,將這塊直角三角板按如圖所示位置擺放.等邊ABC的頂點B與點O重合,BC邊落在OM上,點A恰好落在斜邊MN上,將等邊ABC從圖1的位置沿OM方向以每秒1個單位長度的速度平移,邊ABAC分別與斜邊MN交于點E,F(如圖2所示),設ABC平移的時間為ts)(0t6).

1)等邊ABC的邊長為   ;

2)在運動過程中,當   時,MN垂直平分AB;

3)當0t6時,求直角三角板OMN與等邊ABC重疊部分的面積S與時間t之間的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校數(shù)學興趣小組的同學測量一架無人飛機P的高度,如圖,A,B兩個觀測點相距,在A處測得P在北偏東71°方向上,同時在B處測得P在北偏東35°方向上.求無人飛機P離地面的高度.(結果精確到1米,參考數(shù)據(jù):,sin71°0.95,tan71°2.90)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在菱形ABCD,F為邊AB的中點,DF與對角線AC交于點G,GGEAD于點E,AB=2,且∠1=2,則下列結論:①DFAB;CG=3GA;CG=DF+GE;S四邊形BFGC=1,說法正確的是( )

A. ①③④B. ②③C. ①③D. ①②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】等腰△ABC中,ABBC8,∠ABC120°,BE是∠ABC的平分線,交ACE,點DAB的中點,連接DE,作EFAB于點F

1)求證四邊形BDEF是菱形;

2)如圖以DF為一邊作矩形DFHG,且點E是此矩形的對稱中心,求矩形另一邊的長.

查看答案和解析>>

同步練習冊答案