【題目】如圖,在Rt△ABC中,∠C=90°,點D是AC的中點,且∠A+∠CDB=90°,過點A,D作⊙O,使圓心O在AB上,⊙O與AB交于點E.
(1)求證:直線BD與⊙O相切;
(2)若AD:AE=4:5,BC=6,求⊙O的直徑.
【答案】(1)見解析;(2)5.
【解析】
試題分析:(1)連接OD、DE,求出∠A=∠ADO,求出∠ADO+∠CDB=90°,求出∠ODB=90°,根據切線的判定推出即可;
(2)求出∠ADE=90°=∠C,推出BC∥DE,得出E為AB中點,推出AE=AB,DE=BC=3,設AD=4a,AE=5a,由勾股定理求出DE=3a=3,求出a=1,求出AE即可.
(1)證明:連接OD、DE,
∵OA=OD,
∴∠A=∠ADO,
∵∠A+∠CDB=90°,
∴∠ADO+∠CDB=90°,
∴∠ODB=180°﹣90°=90°,
∴OD⊥BD,
∵OD是⊙O半徑,
∴直線BD與⊙O相切;
(2)解:∵AE是⊙O直徑,
∴∠ADE=90°=∠C,
∴BC∥DE,
∴△ADE∽△ACB,
∴=
∵D為AC中點,
∴AD=DC=AC,
∴AE=BE=AB,
DE是△ACB的中位線,
∴AE=AB,DE=BC=×6=3,
設AD=4a,AE=5a,
在Rt△ADE中,由勾股定理得:DE=3a=3,
解得:a=1,
∴AE=5a=5,
答:⊙O的直徑是5.
科目:初中數學 來源: 題型:
【題目】某藥品經過兩次降價,每瓶零售價由100元降為81元.已知兩次降價的百分率都為x,那么x滿足的方程是( )
A.100(1+x)2=81 B.100(1﹣x)2=81
C.100(1﹣x%)2=81 D.100x2=81
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列命題中,假命題的個數是( )
①垂直于半徑的直線一定是這個圓的切線;
②圓有且只有一個外切三角形;
③三角形有且只有一個內切圓;
④三角形的內心到三角形的三個頂點的距離相等.
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】正方形網格中(網格中的每個小正方形邊長是1),△ABC的頂點均在格點上,請在所給的直角坐標系中解答下列問題:
(1)作出△ABC繞點A逆時針旋轉90°的△AB1C1,再作出△AB1C1關于原點O成中心對稱的△A1B2C2.
(2)點B1的坐標為 ,點C2的坐標為 .
(3)△ABC經過怎樣的旋轉可得到△A1B2C2, .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列調查中,適宜采用全面調查(普查)方式的是( 。
A. 調查市場上老酸奶的質量情況
B. 調查某品牌圓珠筆芯的使用壽命
C. 調查乘坐飛機的旅客是否攜帶了危禁物品
D. 調查我市市民對倫敦奧運會吉祥物的知曉率
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與坐標軸分別交于點點A(0,8)、B(8,0)和點E,動點C從原點O開始沿OA方向以每秒1個單位長度移動,動點D從點B開始沿BO方向以每秒1個單位長度移動,動點C、D同時出發(fā),當動點D到達原點O時,點C、D停止運動.
(1)求該拋物線的解析式及點E的坐標;
(2)若D點運動的時間為t,△CED的面積為S,求S關于t的函數關系式,并求出△CED的面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com