【題目】如圖,直線EF與⊙O相切于點C,點A為⊙O上異于點C的一動點,⊙O的半徑為4ABEF于點B,設(shè)ACF=α(0°<α<180°).

1)若α=,求證:四邊形OCBA為正方形;

2)若AC―AB=1,求AC的長;

3)當AC―AB取最大值時,求α的度數(shù).

【答案】1)見解析;(2AC=;(3)∠α=

【解析】

1)連接OA,OC,證△ABC是等腰直角三角形,△OAC是等腰直角三角形,再證四邊形OCBA為矩形

OA=OC,得四邊形OCBA為正方形;(2)作OHAB,設(shè)AC=x,AB=x-1,由勾股定理得,在RtOAH中,,在RtOEC中,,;(3)根據(jù)銳角三角函數(shù)和相似三角形性質(zhì)可得出差的函數(shù)解析式,再求最值.

解:(1)連接OA,OC

α=ABEF

∴△ABC是等腰直角三角形

EF與⊙O相切于C

∴∠OCB=

∴∠OCA=

∴△OAC是等腰直角三角形

∴∠OCB=CBA=COA=900

∴四邊形OCBA為矩形

OA=OC

∴四邊形OCBA為正方形

2)如圖,作OHAB,

設(shè)AC=x,AB=x-1

∵在RtOAH中,

又∵在RtOEC中,

即:AC=

3)如圖,作OHAC,AC=2CH,設(shè)CH=x,AC=2x,

由(1)(2)可得

,

AB=

AC-AB=y=2x-,∵當x=2時,y最大.

此時,sinα=

α=300

同理,當AOC的左側(cè)時,α=1500,AC-AB的值最大.

∴當AC-AB取最大值時,α=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某乒乓球館普通票價20元/張,暑假為了促銷,新推出兩種優(yōu)惠卡:①金卡售價600元/張,每次憑卡不再收費;②銀卡售價150元/張,每次憑卡另收10元;暑期普通票正常出售,兩種優(yōu)惠卡僅限暑期使用,不限次數(shù).設(shè)打乒乓x次時,所需總費用為y元.

1)分別寫出選擇銀卡、普通票消費時,yx之間的函數(shù)關(guān)系式;

2)在同一個坐標系中,若三種消費方式對應(yīng)的函數(shù)圖像如圖所示,請根據(jù)函數(shù)圖像,寫出選擇哪種消費方式更合算.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】合肥市教育教學研究室為了了解該市所有畢業(yè)班學生參加2019年安徽省中考一模考試的數(shù)學成績情況(滿分:150分,等次:等,130150分;等,110129分;C等,90109分;D等,89分及以下),從該市所有參考學生中隨機抽取部分學生進行調(diào)查,并根據(jù)調(diào)查結(jié)果制作了如下的統(tǒng)計圖表(部分信息未給出):

2019年合肥市一模數(shù)學成績頻數(shù)分布表

等次

頻數(shù)

頻率

0.2

6

2

0.1

合計

1

2019年合肥市一模教學成績頻數(shù)分布直方圖

根據(jù)圖表中的信息,下列說法不正確的是(

A. 這次抽查了20名學生參加一模考試的數(shù)學成績

B. 這次一?荚囍,考試數(shù)學成績?yōu)?/span>等次的頻率為0.4

C. 根據(jù)頻數(shù)分布直方圖制作的扇形統(tǒng)計圖中等次所占的圓心角為

D. 若全市有20000名學生參加中考一模考試,則估計數(shù)學成績達到等次及以上的人數(shù)有12000

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知開口向下的拋物線y=ax2-2ax+2y軸的交點為A,頂點為B,對稱軸與x軸的交點為C,點A與點D關(guān)于對稱軸對稱,直線BDx軸交于點M,直線AB與直線OD交于點N

(1)求點D的坐標.

(2)求點M的坐標(用含a的代數(shù)式表示).

(3)當點N在第一象限,且∠OMB=ONA時,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某省計劃5年內(nèi)全部地級市通高鐵.某高鐵在泰州境內(nèi)的建設(shè)即將展開,現(xiàn)有大量的沙石需要運輸.某車隊有載質(zhì)量為8t、10t的卡車共12輛,全部車輛運輸一次能運輸100t沙石.

1)求某車隊載質(zhì)量為8t、10t的卡車各有多少輛;

2)隨著工程的進展,某車隊需要一次運輸沙石165t以上,為了完成任務(wù),準備新增購這兩種卡車共7輛,車隊有多少種購買方案?請你一一求出.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A8,0),O為坐標原點,P是線段OA上任意一點(不含端點O、A),過P、O兩點的二次函數(shù)y1和過PA兩點的二次函數(shù)y2的圖象開口均向下,它們的頂點分別為BC,射線OBAC相交于點D.當OD=AD=5時,這兩個二次函數(shù)的最大值之和等于_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某種樂器有10個孔,依次記作第1孔,第2孔,……,第10孔,演奏時,第n孔與其音色的動聽指數(shù)D之間滿足關(guān)系式,該樂器的最低動聽指數(shù)為4k+106,求常數(shù)k的取值范圍。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,△ABC內(nèi)接于⊙O.點D在⊙O 上,BD平分∠ABCAC于點E,DFBCBC的延長線于點F

1)求證:FD是⊙O的切線;

2)若BD=8,sinDBF=,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一艘漁船正以60海里/小時的速度向正東方向航行,在A處測得島礁P在東北方向上,繼續(xù)航行1小時后到達B處,此時測得島礁P在北偏東30°方向,同時測得島礁P正東方向上的避風港M在北偏東60°方向.為了在臺風到來之前用最短時間到達M處,漁船立刻加速以80海里/小時的速度繼續(xù)航行多少小時即可到達?(結(jié)果保留根號)

查看答案和解析>>

同步練習冊答案