【題目】已知A(1,5),B(3,﹣1)兩點,在x軸上取一點M,使AM﹣BM取得最大值時,則M的坐標為

【答案】( ,0)
【解析】解:如圖,作點B關于x軸的對稱點B′,連接AB′并延長與x軸的交點,即為所求的M點.此時AM﹣BM=AM﹣B′M=AB′. 不妨在x軸上任取一個另一點M′,連接M′A、M′B、M′B′.
則M′A﹣M′B=M′A﹣M′B′<AB′(三角形兩邊之差小于第三邊).
∴M′A﹣M′B<AM﹣BM,即此時AM﹣BM最大.
∵B′是B(3,﹣1)關于x軸的對稱點,∴B′(3,1).
設直線AB′解析式為y=kx+b,把A(1,5)和B′(3,1)代入得:
,解得 ,
∴直線AB′解析式為y=﹣2x+7.
令y=0,解得x= ,
∴M點坐標為( ,0).
所以答案是:( ,0).

【考點精析】解答此題的關鍵在于理解三角形三邊關系的相關知識,掌握三角形兩邊之和大于第三邊;三角形兩邊之差小于第三邊;不符合定理的三條線段,不能組成三角形的三邊.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,E、F、G、H依次是各邊中點,O是四邊形ABCD內(nèi)一點, 若四邊形AEOH、四邊形BFOE、四邊形CGOF的面積分別為7、9、10,則四邊形DHOG的面積為( )

A. 7 B. 8 C. 9 D. 10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動,△DEF運動,并滿足:點E在邊BC上沿B到C的方向運動,且DE、始終經(jīng)過點A,EF與AC交于M點.
(1)求證:△ABE∽△ECM;
(2)探究:在△DEF運動過程中,重疊部分能否構成等腰三角形?若能,求出BE的長;若不能,請說明理由;
(3)當線段AM最短時,求重疊部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,將兩塊全等的三角板拼在一起,其中ABC的邊BC在直線l上,ACBCAC=BC;EFP的邊FP也在直線l上,邊EF與邊AC重合,EFFPEF=FP.

(1)在圖①中,通過觀察、測量,猜想直接寫出ABAP滿足的數(shù)量關系和位置關系,不要說明理由;

(2)將三角板EFP沿直線l向左平移到圖②的位置時,EPAC于點Q,連接AP、BQ.猜想寫出BQAP滿足的數(shù)量關系和位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知反比例函數(shù) 的圖象,當x取1,2,3,…,n時,對應在反比例圖象上的點分別為M1 , M2 , M3…,Mn , 則 =

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果方程x2+px+q=0的兩個根是x1 , x2 , 那么x1+x2=﹣p,x1x2=q,請根據(jù)以上結論,解決下列問題:
(1)已知關于x的方程x2+mx+n=0,(n≠0),求出一個一元二次方程,使它的兩個根分別是已知方程兩根的倒數(shù);
(2)已知a、b滿足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求 的值;
(3)已知a、b、c滿足a+b+c=0,abc=16,求正數(shù)c的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“一帶一路”讓中國和世界更緊密,“中歐鐵路”為了安全起見在某段鐵路兩旁安置了兩座可旋轉(zhuǎn)探照燈.如圖1所示,燈A射線從AM開始順時針旋轉(zhuǎn)至AN便立即回轉(zhuǎn),燈B射線從BP開始順時針旋轉(zhuǎn)至BQ便立即回轉(zhuǎn),兩燈不停交叉照射巡視.若燈A轉(zhuǎn)動的速度是每秒2度,燈B轉(zhuǎn)動的速度是每秒1度.假定主道路是平行的,即PQMN,且∠BAM:∠BAN=2:1.

(1)填空:∠BAN=_____°;

(2)若燈B射線先轉(zhuǎn)動30秒,燈A射線才開始轉(zhuǎn)動,在燈B射線到達BQ之前,A燈轉(zhuǎn)動幾秒,兩燈的光束互相平行?

(3)如圖2,若兩燈同時轉(zhuǎn)動,在燈A射線到達AN之前.若射出的光束交于點C,過C作ACD交PQ于點D,且ACD=120°,則在轉(zhuǎn)動過程中,請?zhí)骄?/span>BAC與BCD的數(shù)量關系是否發(fā)生變化?若不變,請求出其數(shù)量關系;若改變,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形的邊長為2,以各邊為直徑在正方形內(nèi)畫半圓,則圖中陰影部分的面積為(結果保留兩位有效數(shù)字,參考數(shù)據(jù)π≈3.14)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于H,過CD延長線上一點E作⊙O的切線交AB的延長線于F.切點為G,連接AG交CD于K.
(1)求證:KE=GE;
(2)若KG2=KDGE,試判斷AC與EF的位置關系,并說明理由;
(3)在(2)的條件下,若sinE= ,AK=2 ,求FG的長.

查看答案和解析>>

同步練習冊答案