【題目】如圖,AB是圓O的直徑,CD是圓O的一條弦,且CD⊥AB于點E.
(1)若∠A=48°,求∠OCE的度數(shù);
(2)若CD=4 ,AE=2,求圓O的半徑.
【答案】
(1)解:∵CD⊥AB,∠A=48°,
∴∠ADE=42°.
∴∠AOC=2∠ADE=84°,
∴∠OCE=90°﹣84°=6°
(2)解:因為AB是圓O的直徑,且CD⊥AB于點E,所以CE= CE= ×4 =2 ,
在Rt△OCE中,OC2=CE2+OE2,
設(shè)圓O的半徑為r,則OC=r,OE=OA﹣AE=r﹣2,所以r2=(2 )2+(r﹣2)2,
解得:r=3.所以圓O的半徑為3
【解析】(1)首先求出∠ADE的度數(shù),再根據(jù)圓周角定理求出∠AOC的度數(shù),最后求出∠OCE的度數(shù);(2)由弦CD與直徑AB垂直,利用垂徑定理得到E為CD的中點,求出CE的長,在直角三角形OCE中,設(shè)圓的半徑OC=r,OE=OA﹣AE,表示出OE,利用勾股定理列出關(guān)于r的方程,求出方程的解即可得到圓的半徑r的值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算
(1)5.6+(﹣0.9)+4.4+(﹣8.1)+(﹣0.1)
(2)5+(﹣ )﹣7﹣(﹣2.5)
(3)(﹣)×(﹣)+(﹣)×(+)
(4)
(5)8﹣23÷(﹣4)3+
(6)(﹣1)2018+(﹣5)×[(﹣2)3+2]﹣(﹣4)2÷(﹣ )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點D為AB的中點.
(1)如果點P在線段BC上以3cm/s的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.
①若點Q的運動速度與點P的運動速度相等,經(jīng)過1s后,△BPD與△CQP是否全等,請說明理由;
②若點Q的運動速度與點P的運動速度不相等,當(dāng)點Q的運動速度為多少時,能夠使△BPD與△CQP全等?
(2)若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿△ABC三邊運動,求經(jīng)過多長時間點P與點Q第一次在△ABC的哪條邊上相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O是直線AB上一點,OD平分∠BOC,∠COE=90°.
(1)若∠AOC=48°,求∠DOE的度數(shù).
(2)若∠AOC=α,則∠DOE= (用含α的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD中,E是AD上一點,F是AB上的一點,EF⊥EC,且EF=EC.
(1)求證:△AEF≌△DCE.
(2)若DE=4cm,矩形ABCD的周長為32cm,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某發(fā)電廠共有6臺發(fā)電機(jī)發(fā)電,每臺的發(fā)電量為300萬千瓦/月.該廠計劃從今年7月開始到年底,對6臺發(fā)電機(jī)各進(jìn)行一次改造升級.每月改造升級1臺,這臺發(fā)電機(jī)當(dāng)月停機(jī),并于次月再投入發(fā)電,每臺發(fā)電機(jī)改造升級后,每月的發(fā)電量將比原來提高20%.已知每臺發(fā)電機(jī)改造升級的費用為20萬元.將今年7月份作為第1個月開始往后算,該廠第x(x是正整數(shù))個月的發(fā)電量設(shè)為y(萬千瓦).
(1)求該廠第2個月的發(fā)電量及今年下半年的總發(fā)電量;
(2)求y關(guān)于x的函數(shù)關(guān)系式;
(3)如果每發(fā)1千瓦電可以盈利0.04元,那么從第1個月開始,至少要到第幾個月,這期間該廠的發(fā)電盈利扣除發(fā)電機(jī)改造升級費用后的盈利總額ω1(萬元),將超過同樣時間內(nèi)發(fā)電機(jī)不作改造升級時的發(fā)電盈利總額ω2(萬元)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】月讀書節(jié),深圳市為統(tǒng)計某學(xué)校初三學(xué)生讀書狀況,如下圖:
月讀書節(jié),深圳市為統(tǒng)計某學(xué)校初三學(xué)生讀書狀況,如下圖:
三本以上的值為________,參加調(diào)查的總?cè)藬?shù)為________,補(bǔ)全統(tǒng)計圖;
三本以上的圓心角為________.
全市有萬學(xué)生,三本以上有________人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】適合下列條件的△ABC中, 直角三角形的個數(shù)為
①②,∠A=45°;③∠A=32°, ∠B=58°;
④⑤⑥
⑦⑹
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了從甲、乙兩名選手中選拔一人參加射擊比賽,現(xiàn)對他們進(jìn)行一次測驗,兩個人在相同條件下各射靶10次,為了比較兩人的成績,制作了如下統(tǒng)計圖表:
甲、乙射擊成績統(tǒng)計表
平均數(shù) | 中位數(shù) | 方差 | 命中10環(huán)的次數(shù) | |
甲 | 7 | |||
乙 | 1 |
(1)請補(bǔ)全上述圖表(請直接在表中填空和補(bǔ)全折線圖);
(2)如果規(guī)定成績較穩(wěn)定者勝出,你認(rèn)為誰將勝出?說明你的理由;
(3)如果希望(2)中的另一名選手勝出,根據(jù)圖表中的信息,應(yīng)該制定怎樣的評判規(guī)則?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com