【題目】已知:如圖,E點是正方形ABCD的邊AB上一點,AB=4,DE=6,△DAE逆時針旋轉后能夠與△DCF重合.
(1)旋轉中心是 .旋轉角為 度.
(2)請你判斷△DFE的形狀,并說明理由.
(3)求四邊形DEBF的周長和面積.
【答案】(1)D,90;(2) △DFE的形狀是等腰直角三角形,見解析;(3)20,16
【解析】
(1)由題意可知要確定旋轉中心及旋轉的角度,首先確定哪是對應點,即可確定旋轉中心以及旋轉角;
(2)根據(jù)旋轉的性質,可以得到旋轉前后的兩個圖形全等,以及旋轉角的定義即可作出判斷;
(3)由題意根據(jù)△DAE≌△DCF,可以得到:AE=CF,DE=DF,則四邊形DEBF的周長就是正方形的三邊的和與DE的和.
解:(1)由題意可知旋轉中心是點D,
即為旋轉角為90度.
(2)根據(jù)旋轉的性質可得:△DAE≌△DCF,則DE=DF,∠EDF=∠ADC=90°,
則△DFE的形狀是等腰直角三角形.
(3)四邊形DEBF的周長是BE+BC+CF+DF+DE=AB+BC+DE+DF=4+4+6+6=20;
由題意可知四邊形DEBF的面積等于正方形ABCD的面積=16.
科目:初中數(shù)學 來源: 題型:
【題目】一家商店進行裝修,若請甲、乙兩個裝修組同時施工,8天可以完成,需付兩組費用共3520元,若先請甲組單獨做6天,再請乙組單獨做12天可以完成,需付費用3480元,問:
(1)甲,乙兩組工作一天,商店各應付多少錢?
(2)已知甲單獨完成需12天,乙單獨完成需24天,單獨請哪個組,商店所需費用最少?
(3)若裝修完后,商店每天可贏利200元,你認為如何安排施工更有利于商店?請你幫助商店決策.(可用(1)(2)問的條件及結論)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校組織340名師生進行長途考察活動,帶有行李170件,計劃租用甲、乙兩種型號的汽車共10輛.經(jīng)了解,甲車每輛最多能載40人和16件行李,乙車每輛最多能載30人和20件行李.
(1)請你幫助學校設計所有可行的租車方案.
(2)如果甲車的租金為每輛2 000元,乙車的租金為每輛1 800元,問哪種可行方案使租車費用最省?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,我們把對角線互相垂直的四邊形叫做垂美四邊形.
(l)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請說明理由.
(2)性質探宄:試探索垂美四邊形ABCD兩組對邊AB,CD與BC,AD之間的數(shù)量關系.
猜想結論:(要求用文字語言敘述)
寫出證明過程(先畫出圖形,寫出已知、求證)
(3)問題解決:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5,求GE長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】科技改變世界.2017年底,快遞分揀機器人從微博火到了朋友圈.據(jù)介紹,這些機器人不僅可以自動規(guī)劃最優(yōu)路線,將包裹準確地放入相應的路口,還會感應避讓障礙物,自動歸隊取包裹,沒電的時候還會自己找充電樁充電.某快遞公司啟用40臺A種機器人、150臺B種機器人分揀快遞包裹,A、B兩種機器人全部投入工作,1小時共可以分揀0.77萬件包裹;若全部A種機器人工作1.5小時,全部B種機器人工作2小時,一共可以分揀1.38萬件包裹.
(1)求兩種機器人每臺每小時各分揀多少件包裹?
(2)為進一步提高效率,快遞公司計劃再購進A、B兩種機器人共100臺.若要保證新購進的這批機器人每小時的總分揀量不少于5500件,求至少應購進A種機器人多少臺?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著粵港澳大灣區(qū)建設的加速推進,廣東省正加速布局以5G等為代表的戰(zhàn)略性新興產(chǎn)業(yè),據(jù)統(tǒng)計,目前廣東5G基站的數(shù)量約1.5萬座,計劃到2020年底,全省5G基站數(shù)是目前的4倍,到2022年底,全省5G基站數(shù)量將達到17.34萬座。
(1)計劃到2020年底,全省5G基站的數(shù)量是多少萬座?;
(2)按照計劃,求2020年底到2022年底,全省5G基站數(shù)量的年平均增長率。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】按要求完成下列證明:
已知:如圖,AB∥CD,直線AE交CD于點C,∠BAC+∠CDF=180°.
求證:AE∥DF.
證明: ∵AB∥CD(____________________________) ,
∴∠BAC=∠DCE(__________________________________________________________________________).
∵∠BAC+∠CDF=180°(已知),
∴____________ +∠CDF=180°(____________________________________).
∴AE∥DF(______________________________________________________________________).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在ABCD中,∠ADC的平分線交直線BC于點E、交AB的延長線于點F,連接AC.
(1)如圖1,若∠ADC=90°,G是EF的中點,連接AG、CG.
①求證:BE=BF;
②請判斷△AGC的形狀,并說明理由.
(2)如圖2,若∠ADC=60°,將線段FB繞點F順時針旋轉60°至FG,連接AG、CG,判斷△AGC的形狀.(直接寫出結論不必證明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,平分交于點,為上一點,經(jīng)過點,的分別交,于點,,連接交于點.
(1)求證:是的切線;
(2)設,,試用含的代數(shù)式表示線段的長;
(3)若,,求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com