【題目】如圖所示,已知六邊形ABCDEF中,∠AB=∠CDEF120°.試說明ABBC=EFED

【答案】見解析

【解析】分析:分別延長AB、DC相交于點(diǎn)M,延長AF、DE相交于點(diǎn)N,通過作輔助線我們可以得到∠MBC=∠MCB=60°,再結(jié)合三角形內(nèi)角和定理即可判斷△BMC是等邊三角形,同理還可以得出△EFN是等邊三角形;由“兩組對角分別相等的四邊形是平行四邊形”可知四邊形AMDN是平行四邊形,從而可以得到AM=DN即可得出結(jié)果.

本題解析:分別延長AB、DC相交于點(diǎn)M,延長AF、DE相交于點(diǎn)N.

∵∠ABC=DCB=120°,

∴∠MBC=MCB=60°.

∵在MBC中,∠MBC=MCB=60°,

∴∠CMB=60°.

同理∠FNE=60°.

∵∠MBC=MCB=60°,CMB=60°,

∴△BMC是等邊三角形.

同理EFN是等邊三角形.

∵∠BAN=CDE=120°,CMB=60°,FNE=60°,

∴四邊形AMDN是平行四邊形,

AM=DN.

∵△BMC、EFN是等邊三角形,

BC=BM,EF=EN.

AM=DN,BC=BM,EF=EN,

AB+BC=DE+EF.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,對于P(x,y)作變換得到P′(y+1,x+1),例如:A1(31)作上述變換得到A2(0,4),再將A2做上述變換得到A3___________,這樣依次得到A1,A2,A3,…An;…,則A2018的坐標(biāo)為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】
(1)計(jì)算:3( ﹣π)0 +(﹣1)2011
(2)先化簡,再求值: ,其中x= -3.
(3)如圖,平行四邊形ABCD的對角線AC、BD交于點(diǎn)O,E、F在AC上,G、H在BD上,且AF=CE,BH=DG. 求證:GF∥HE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1─9中的三個(gè)數(shù)字,如2、35組成數(shù)字不重復(fù)的三位整數(shù),共有6個(gè),計(jì)算方法為:3×2×1=6,現(xiàn)有1個(gè)老師和4個(gè)學(xué)生站成一排照相,老師站在正中間的不同站法有______種?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù) 的圖象相交于A點(diǎn),與y軸、x軸分別相交于B、C兩點(diǎn),且C(2,0).當(dāng)x<﹣1時(shí),一次函數(shù)值大于反比例函數(shù)值,當(dāng)x>﹣1時(shí),一次函數(shù)值小于反比例函數(shù)值.

(1)求一次函數(shù)的解析式;
(2)設(shè)函數(shù)y2= 的圖象與 的圖象關(guān)于y軸對稱,在y2= 的圖象上取一點(diǎn)P(P點(diǎn)的橫坐標(biāo)大于2),過P作PQ丄x軸,垂足是Q,若四邊形BCQP的面積等于2,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了更好地保護(hù)美麗如畫的邛海濕地,西昌市污水處理廠決定先購買A,B兩種型號的污水處理設(shè)備共20,對邛海濕地周邊污水進(jìn)行處理.每臺A型污水處理設(shè)備12萬元,每臺B型污水處理設(shè)備10萬元.已知1A型污水處理設(shè)備和2B型污水處理設(shè)備每周可以處理污水640 t,2A型污水處理設(shè)備和3B型污水處理設(shè)備每周可以處理污水1 080 t.

(1)A,B兩種型號的污水處理設(shè)備每周每臺分別可以處理污水多少噸.

(2)經(jīng)預(yù)算,市污水處理廠購買設(shè)備的資金不超過230萬元,每周處理污水的量不低于4 500 t,請你列舉出所有購買方案,并指出哪種方案所需資金最少,最少是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)A為x軸負(fù)半軸上一點(diǎn),點(diǎn)B為x軸正半軸上一點(diǎn),C(0,a),D(b,a),其中a,b滿足關(guān)系式:|a+3|+(b-a+1)2=0.

(1)a=___,b=___,△BCD的面積為______;

(2)如圖2,若AC⊥BC,點(diǎn)P線段OC上一點(diǎn),連接BP,延長BP交AC于點(diǎn)Q,當(dāng)∠CPQ=∠CQP時(shí),求證:BP平分∠ABC;

(3)如圖3,若AC⊥BC,點(diǎn)E是點(diǎn)A與點(diǎn)B之間一動(dòng)點(diǎn),連接CE,CB始終平分∠ECF,當(dāng)點(diǎn)E在點(diǎn)A與點(diǎn)B之間運(yùn)動(dòng)時(shí),的值是否變化?若不變,求出其值;若變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小英和小明姐弟二人準(zhǔn)備一起去觀看端午節(jié)龍舟賽.但因家中臨時(shí)有事,必須留下一人在家,于是姐弟二人采用游戲的方式來確定誰去看龍舟賽.游戲規(guī)則是:在不透明的口袋中分別放入2個(gè)白色和1個(gè)黃色的乒乓球,它們除顏色外其余都相同.游戲時(shí)先由小英從口袋中任意摸出1個(gè)乒乓球記下顏色后放回并搖勻,再由小明從口袋中摸出1個(gè)乒乓球,記下顏色.如果姐弟二人摸到的乒乓球顏色相同.則小英贏,否則小明贏.
(1)請用樹狀圖或列表的方法表示游戲中所有可能出現(xiàn)的結(jié)果.
(2)這個(gè)游戲?qū)τ螒螂p方公平嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:(2018﹣π)0=_____

查看答案和解析>>

同步練習(xí)冊答案