【題目】“構(gòu)造圖形解題”,它的應(yīng)用十分廣泛,特別是有些技巧性很強(qiáng)的題目,如果不能發(fā)現(xiàn)題目中所隱含的幾何意義,而用通常的代數(shù)方法去思考,經(jīng)常讓我們手足無措,難以下手,這時(shí),如果能轉(zhuǎn)換思維,發(fā)現(xiàn)題目中隱含的幾何條件,通過構(gòu)造適合的幾何圖形,將會(huì)得到事半功倍的效果,下面介紹兩則實(shí)例:

實(shí)例一:1876年,美國(guó)總統(tǒng)伽非爾德利用實(shí)例一圖證明了勾股定理:由四邊形,化簡(jiǎn)得:

實(shí)例二:歐幾里得的《幾何原本》記載,關(guān)于的方程的圖解法是:畫,使,,再在斜邊上截取,則的長(zhǎng)就是該方程的一個(gè)正根(如實(shí)例二圖)

根據(jù)以上閱讀材料回答下面的問題:

1)如圖1,請(qǐng)利用圖形中面積的等量關(guān)系,寫出甲圖要證明的數(shù)學(xué)公式是    ,乙圖要證明的數(shù)學(xué)公式是    ,體現(xiàn)的數(shù)學(xué)思想是    ;

2)如圖2,按照實(shí)例二的方式構(gòu)造,連接,請(qǐng)用含字母的代數(shù)式表示的長(zhǎng),的表達(dá)式能和已學(xué)的什么知識(shí)相聯(lián)系;

3)如圖3,已知,為直徑,點(diǎn)為圓上一點(diǎn),過點(diǎn)于點(diǎn),連接,設(shè),,求證:

    

        

【答案】1)完全平方公式,平方差公式,數(shù)形結(jié)合的思想;(2,的表達(dá)式能和一元二次方程的求根公式相聯(lián)系;(3)證明見解析.

【解析】

1)根據(jù)大正方形面積=各個(gè)部分面積之和,即可得到完全平方公式和平方差公式,進(jìn)而即可得到答案;

2)根據(jù)勾股定理以及一元二次方程的求根公式,即可得到答案;

3)連接,易證,,結(jié)合,即可得到結(jié)論.

1)如圖1中,圖甲大正方形的面積,

圖乙中大正方形的面積,即:

它們都體現(xiàn)了數(shù)形結(jié)合的思想.

故答案是:完全平方公式,平方差公式,數(shù)形結(jié)合的思想;

2)∵在中,,,

,

;

,由求根公式可得,

答:的表達(dá)式能和一元二次方程的求根公式相聯(lián)系;

3)由已知,可得,連接

為直徑,

,

,

,

,,

,

,即

∵在中,,

,即,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(新洲區(qū)月考)如圖1,AB為半圓O的直徑,C為圓弧上一點(diǎn),過點(diǎn)C的直線與AB的延長(zhǎng)線交于點(diǎn)E,ADCE于點(diǎn)D,AC平分∠DAB.

1)求證:CE是⊙O的切線.

2)若AB6,BOE的中點(diǎn),CFAB,垂足為點(diǎn)F,求CF的長(zhǎng);

3)如圖2,連接ODAC于點(diǎn)G,若,求sinE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線yx4與拋物線y+bx+c交于坐標(biāo)軸上兩點(diǎn)A、C,拋物線與x軸另一交點(diǎn)為點(diǎn)B;

1)求拋物線解析式;

2)若動(dòng)點(diǎn)D在直線AC下方的拋物線上;

作直線BD,交線段AC于點(diǎn)E,交y軸于點(diǎn)F,連接AD;求△ADE與△CEF面積差的最大值,及此時(shí)點(diǎn)D的坐標(biāo);

如圖2,作DM⊥直線AC,垂足為點(diǎn)M,是否存在點(diǎn)D,使△CDM中某個(gè)角恰好是∠ACO的一半?若存在,直接寫出點(diǎn)D的橫坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)EBC邊的中點(diǎn),將△DCE沿DE折疊,使點(diǎn)C落在點(diǎn)F處,延長(zhǎng)EFAB于點(diǎn)G,連接DG、BF

(1)求證:DG平分∠ADF

(2)AB12,求△EDG的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】距離中考體考時(shí)間越來越近,年級(jí)想了解初三年級(jí)1512名學(xué)生周末在家體育鍛煉的情況,在初三年級(jí)隨機(jī)抽取了18名男生和18名女生,對(duì)他們周末在家的鍛煉時(shí)間進(jìn)行了調(diào)查,并收集得到了以下數(shù)據(jù)(單位:分鐘)

男生:28,30,32,46,68,39,8070,66,57,70,95100,5869,8899,105

女生:3648,78,99,56,62,35,109,2988,8869,7355,9098,6972

統(tǒng)計(jì)數(shù)據(jù),并制作了如下統(tǒng)計(jì)表:

時(shí)間

男生

2

4

女生

1

5

9

3

分析數(shù)據(jù):兩組數(shù)據(jù)的極差、平均數(shù)、中位數(shù)、眾數(shù)如表所示

極差

平均數(shù)

中位數(shù)

眾數(shù)

方差

男生

77

66.7

70

617.3

女生

69.7

70.5

547.2

1)請(qǐng)將上面的表格補(bǔ)充完整:    ,    ,    ,        ;

2)已知該年級(jí)男女生人數(shù)差不多,根據(jù)調(diào)查的數(shù)據(jù),估計(jì)初三年級(jí)周末在家鍛煉的時(shí)間在90分鐘以上(不包含90分鐘)的同學(xué)約有多少人?

3)體育老師看了表格數(shù)據(jù)后認(rèn)為初三年級(jí)的女生周末鍛煉做得比男生好,請(qǐng)你結(jié)合統(tǒng)計(jì)數(shù)據(jù),寫出兩條支持體育老師觀點(diǎn)的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】時(shí)下娛樂綜藝節(jié)目風(fēng)靡全國(guó),隨機(jī)對(duì)九年級(jí)部分學(xué)生進(jìn)行了一次調(diào)查,對(duì)最喜歡《我是喜劇王》(記為A)、《王牌對(duì)王牌》(記為B)、《奔跑吧,兄弟》(記為C)、《歡樂喜劇人》(記為D)的同學(xué)進(jìn)行了統(tǒng)計(jì)(每位同學(xué)只選擇一個(gè)最喜歡的節(jié)目),繪制了以下不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息解答問題:

1)求本次調(diào)查一共選取了多少名學(xué)生;

2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)若九年級(jí)共有1900名學(xué)生,估計(jì)其中最喜歡《奔跑吧,兄弟》的學(xué)生大約是多少名.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,BC⊙O于點(diǎn)D,E的中點(diǎn),連接AEBC于點(diǎn)F∠ACB=2∠EAB

1)求證:AC⊙O的切線;

2)若cosC=AC=6,求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yax2+bx+ca≠0)的圖象如圖所示,有下列結(jié)論:①abc0;②2a+b0;③若m為任意實(shí)數(shù),則a+bam2+bm;④ab+c0;⑤若ax12+bx1ax22+bx2,且x1≠x2,則x1+x22.其中,正確結(jié)論的個(gè)數(shù)為( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,上一點(diǎn),過的切線,交的延長(zhǎng)線于點(diǎn),過,交延長(zhǎng)線于點(diǎn),連接,交于點(diǎn),交于點(diǎn),連接

1)求證:;

2)連接,若,,求的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案